Consensus in the search for areas of endemism
- Autores
- Aagesen, Lone; Szumik, Claudia Adriana; Goloboff, Pablo Augusto
- Año de publicación
- 2013
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- For ambiguous data sets, methods to determine areas of endemism based on an optimality criterion may result in large numbers of candidate areas, and thus some kind of consensus technique is required to summarize those results. This paper presents a formal description of two possible algorithms or rules for area consensus, which merge candidate areas if they share a user-defined percentage of the species that define each candidate area. The two consensus rules summarize ambiguity in different ways. Applying the ?tight? rule will result in consensus areas defined by species present in nearly all cells, but in cases where there is significant conflict the result may be a high number of distinct consensus areas. The ?loose? consensus rule is more agglomerative and will result in fewer consensus areas, combining areas when overlapping distribution patterns exist. Depending on the aim and scale of the analysis, the two consensus rules can be used either to delimit areas of endemism with sharp boundaries or to identify diffuse and gradually replacing biogeographical patterns. These two different approaches are discussed and demonstrated using real data.
Fil: Aagesen, Lone. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Botánica Darwinion; Argentina
Fil: Szumik, Claudia Adriana. Universidad Nacional de Tucumán. Facultad de Ciencias Naturales e Instituto Miguel Lillo. Instituto Superior de Entomología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tucumán; Argentina
Fil: Goloboff, Pablo Augusto. Universidad Nacional de Tucumán. Facultad de Ciencias Naturales e Instituto Miguel Lillo. Instituto Superior de Entomología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tucumán; Argentina - Materia
-
Areas of Endemism
Biogeography
Conflicting Species Distributions
Consensus Algorithms - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/7327
Ver los metadatos del registro completo
id |
CONICETDig_b775e86a263f33cd4d21b4c0c0ba3acc |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/7327 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Consensus in the search for areas of endemismAagesen, LoneSzumik, Claudia AdrianaGoloboff, Pablo AugustoAreas of EndemismBiogeographyConflicting Species DistributionsConsensus Algorithmshttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1For ambiguous data sets, methods to determine areas of endemism based on an optimality criterion may result in large numbers of candidate areas, and thus some kind of consensus technique is required to summarize those results. This paper presents a formal description of two possible algorithms or rules for area consensus, which merge candidate areas if they share a user-defined percentage of the species that define each candidate area. The two consensus rules summarize ambiguity in different ways. Applying the ?tight? rule will result in consensus areas defined by species present in nearly all cells, but in cases where there is significant conflict the result may be a high number of distinct consensus areas. The ?loose? consensus rule is more agglomerative and will result in fewer consensus areas, combining areas when overlapping distribution patterns exist. Depending on the aim and scale of the analysis, the two consensus rules can be used either to delimit areas of endemism with sharp boundaries or to identify diffuse and gradually replacing biogeographical patterns. These two different approaches are discussed and demonstrated using real data.Fil: Aagesen, Lone. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Botánica Darwinion; ArgentinaFil: Szumik, Claudia Adriana. Universidad Nacional de Tucumán. Facultad de Ciencias Naturales e Instituto Miguel Lillo. Instituto Superior de Entomología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tucumán; ArgentinaFil: Goloboff, Pablo Augusto. Universidad Nacional de Tucumán. Facultad de Ciencias Naturales e Instituto Miguel Lillo. Instituto Superior de Entomología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tucumán; ArgentinaWiley2013-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/7327Aagesen, Lone; Szumik, Claudia Adriana; Goloboff, Pablo Augusto; Consensus in the search for areas of endemism; Wiley; Journal Of Biogeography; 40; 11; 11-2013; 2011-20160305-0270enginfo:eu-repo/semantics/altIdentifier/doi/10.1111/jbi.12172/abstractinfo:eu-repo/semantics/altIdentifier/url/http://onlinelibrary.wiley.com/doi/10.1111/jbi.12172/abstractinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:51:04Zoai:ri.conicet.gov.ar:11336/7327instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:51:05.25CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Consensus in the search for areas of endemism |
title |
Consensus in the search for areas of endemism |
spellingShingle |
Consensus in the search for areas of endemism Aagesen, Lone Areas of Endemism Biogeography Conflicting Species Distributions Consensus Algorithms |
title_short |
Consensus in the search for areas of endemism |
title_full |
Consensus in the search for areas of endemism |
title_fullStr |
Consensus in the search for areas of endemism |
title_full_unstemmed |
Consensus in the search for areas of endemism |
title_sort |
Consensus in the search for areas of endemism |
dc.creator.none.fl_str_mv |
Aagesen, Lone Szumik, Claudia Adriana Goloboff, Pablo Augusto |
author |
Aagesen, Lone |
author_facet |
Aagesen, Lone Szumik, Claudia Adriana Goloboff, Pablo Augusto |
author_role |
author |
author2 |
Szumik, Claudia Adriana Goloboff, Pablo Augusto |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Areas of Endemism Biogeography Conflicting Species Distributions Consensus Algorithms |
topic |
Areas of Endemism Biogeography Conflicting Species Distributions Consensus Algorithms |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.6 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
For ambiguous data sets, methods to determine areas of endemism based on an optimality criterion may result in large numbers of candidate areas, and thus some kind of consensus technique is required to summarize those results. This paper presents a formal description of two possible algorithms or rules for area consensus, which merge candidate areas if they share a user-defined percentage of the species that define each candidate area. The two consensus rules summarize ambiguity in different ways. Applying the ?tight? rule will result in consensus areas defined by species present in nearly all cells, but in cases where there is significant conflict the result may be a high number of distinct consensus areas. The ?loose? consensus rule is more agglomerative and will result in fewer consensus areas, combining areas when overlapping distribution patterns exist. Depending on the aim and scale of the analysis, the two consensus rules can be used either to delimit areas of endemism with sharp boundaries or to identify diffuse and gradually replacing biogeographical patterns. These two different approaches are discussed and demonstrated using real data. Fil: Aagesen, Lone. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Botánica Darwinion; Argentina Fil: Szumik, Claudia Adriana. Universidad Nacional de Tucumán. Facultad de Ciencias Naturales e Instituto Miguel Lillo. Instituto Superior de Entomología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tucumán; Argentina Fil: Goloboff, Pablo Augusto. Universidad Nacional de Tucumán. Facultad de Ciencias Naturales e Instituto Miguel Lillo. Instituto Superior de Entomología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tucumán; Argentina |
description |
For ambiguous data sets, methods to determine areas of endemism based on an optimality criterion may result in large numbers of candidate areas, and thus some kind of consensus technique is required to summarize those results. This paper presents a formal description of two possible algorithms or rules for area consensus, which merge candidate areas if they share a user-defined percentage of the species that define each candidate area. The two consensus rules summarize ambiguity in different ways. Applying the ?tight? rule will result in consensus areas defined by species present in nearly all cells, but in cases where there is significant conflict the result may be a high number of distinct consensus areas. The ?loose? consensus rule is more agglomerative and will result in fewer consensus areas, combining areas when overlapping distribution patterns exist. Depending on the aim and scale of the analysis, the two consensus rules can be used either to delimit areas of endemism with sharp boundaries or to identify diffuse and gradually replacing biogeographical patterns. These two different approaches are discussed and demonstrated using real data. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-11 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/7327 Aagesen, Lone; Szumik, Claudia Adriana; Goloboff, Pablo Augusto; Consensus in the search for areas of endemism; Wiley; Journal Of Biogeography; 40; 11; 11-2013; 2011-2016 0305-0270 |
url |
http://hdl.handle.net/11336/7327 |
identifier_str_mv |
Aagesen, Lone; Szumik, Claudia Adriana; Goloboff, Pablo Augusto; Consensus in the search for areas of endemism; Wiley; Journal Of Biogeography; 40; 11; 11-2013; 2011-2016 0305-0270 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1111/jbi.12172/abstract info:eu-repo/semantics/altIdentifier/url/http://onlinelibrary.wiley.com/doi/10.1111/jbi.12172/abstract |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Wiley |
publisher.none.fl_str_mv |
Wiley |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269071722151936 |
score |
13.13397 |