Site index for Prosopis alba plantations in the semi-arid chaco through mixed models
- Autores
- Senilliani, Maria Gracia; Bruno, Cecilia Ines; Brassiolo, Miguel Marcelo
- Año de publicación
- 2019
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The classification of sites through curves of Site Index allows to predict the yield of the planted forests at a certain age of the stand and to plan cultural treatments. The goal of this research was to compare linear and non-linear models of fixed effects vs. mixed non-linear models to estimate the site index in plantations of Prosopis alba var Griseb in the irrigated area of the province of Santiago del Estero, Argentina using the guide curve method. The data used comes from temporary plots, permanent plots and growth data from the stem analysis of selected individuals based on their greater growth in height within the sampled areas. The registered variable for the evaluation of the site was the dominant Height (HD), defined as the average height of the 100 thickest trees per hectare. Considering that the source of data from repeated measurements on the same subject implies the presence of correlation and/or heteroscedasticity, it was proposed to evaluate statistical models that allow to properly representing the structure of the variance-covariance matrix, improving the accuracy in the adjustment. From the analysis of the results, it appears that the models non-linear mixed models have had better performance in the adjustment of the Site Index than linear and non-linear models of fixed effects. The most accurate model (smallest AIC and BIC) in the site index estimation was the mixed non-linear regression model of 'Gompertz', with structure of composite symmetry correlation and exponential heteroscedasticity.v.25 n.2 2019
Fil: Senilliani, Maria Gracia. Universidad Nacional de Santiago del Estero. Facultad de Ciencias Forestales; Argentina
Fil: Bruno, Cecilia Ines. Instituto Nacional de Tecnologia Agropecuaria. Centro de Investigaciones Agropecuarias. Unidad de Fitopatologia y Modelizacion Agricola. Grupo Vinculado Catedra de Estadistica y Biometria de la Facultad de Ciencias Agropecuarias de la Universidad Nacional de Cordoba Al Ufyma | Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnologico Conicet - Cordoba. Unidad de Fitopatologia y Modelizacion Agricola. Grupo Vinculado Catedra de Estadistica y Biometria de la Facultad de Ciencias Agropecuarias de la Universidad Nacional de Cordoba Al Ufyma.; Argentina
Fil: Brassiolo, Miguel Marcelo. Universidad Nacional de Santiago del Estero. Facultad de Ciencias Forestales; Argentina - Materia
-
Dominant height
Forestry
Site quality - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/106550
Ver los metadatos del registro completo
id |
CONICETDig_b6b4da732852a7ba8bd6188b80e17aba |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/106550 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Site index for Prosopis alba plantations in the semi-arid chaco through mixed modelsSenilliani, Maria GraciaBruno, Cecilia InesBrassiolo, Miguel MarceloDominant heightForestrySite qualityhttps://purl.org/becyt/ford/4.1https://purl.org/becyt/ford/4The classification of sites through curves of Site Index allows to predict the yield of the planted forests at a certain age of the stand and to plan cultural treatments. The goal of this research was to compare linear and non-linear models of fixed effects vs. mixed non-linear models to estimate the site index in plantations of Prosopis alba var Griseb in the irrigated area of the province of Santiago del Estero, Argentina using the guide curve method. The data used comes from temporary plots, permanent plots and growth data from the stem analysis of selected individuals based on their greater growth in height within the sampled areas. The registered variable for the evaluation of the site was the dominant Height (HD), defined as the average height of the 100 thickest trees per hectare. Considering that the source of data from repeated measurements on the same subject implies the presence of correlation and/or heteroscedasticity, it was proposed to evaluate statistical models that allow to properly representing the structure of the variance-covariance matrix, improving the accuracy in the adjustment. From the analysis of the results, it appears that the models non-linear mixed models have had better performance in the adjustment of the Site Index than linear and non-linear models of fixed effects. The most accurate model (smallest AIC and BIC) in the site index estimation was the mixed non-linear regression model of 'Gompertz', with structure of composite symmetry correlation and exponential heteroscedasticity.v.25 n.2 2019Fil: Senilliani, Maria Gracia. Universidad Nacional de Santiago del Estero. Facultad de Ciencias Forestales; ArgentinaFil: Bruno, Cecilia Ines. Instituto Nacional de Tecnologia Agropecuaria. Centro de Investigaciones Agropecuarias. Unidad de Fitopatologia y Modelizacion Agricola. Grupo Vinculado Catedra de Estadistica y Biometria de la Facultad de Ciencias Agropecuarias de la Universidad Nacional de Cordoba Al Ufyma | Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnologico Conicet - Cordoba. Unidad de Fitopatologia y Modelizacion Agricola. Grupo Vinculado Catedra de Estadistica y Biometria de la Facultad de Ciencias Agropecuarias de la Universidad Nacional de Cordoba Al Ufyma.; ArgentinaFil: Brassiolo, Miguel Marcelo. Universidad Nacional de Santiago del Estero. Facultad de Ciencias Forestales; ArgentinaUniversidade Federal de Lavras2019-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/106550Senilliani, Maria Gracia; Bruno, Cecilia Ines; Brassiolo, Miguel Marcelo; Site index for Prosopis alba plantations in the semi-arid chaco through mixed models; Universidade Federal de Lavras; Cerne; 25; 2; 6-2019; 195-2020104-7760CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://cerne.ufla.br/site/index.php/CERNE/article/view/2035/1132info:eu-repo/semantics/altIdentifier/doi/10.1590/01047760201925022622info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:20:08Zoai:ri.conicet.gov.ar:11336/106550instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:20:08.735CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Site index for Prosopis alba plantations in the semi-arid chaco through mixed models |
title |
Site index for Prosopis alba plantations in the semi-arid chaco through mixed models |
spellingShingle |
Site index for Prosopis alba plantations in the semi-arid chaco through mixed models Senilliani, Maria Gracia Dominant height Forestry Site quality |
title_short |
Site index for Prosopis alba plantations in the semi-arid chaco through mixed models |
title_full |
Site index for Prosopis alba plantations in the semi-arid chaco through mixed models |
title_fullStr |
Site index for Prosopis alba plantations in the semi-arid chaco through mixed models |
title_full_unstemmed |
Site index for Prosopis alba plantations in the semi-arid chaco through mixed models |
title_sort |
Site index for Prosopis alba plantations in the semi-arid chaco through mixed models |
dc.creator.none.fl_str_mv |
Senilliani, Maria Gracia Bruno, Cecilia Ines Brassiolo, Miguel Marcelo |
author |
Senilliani, Maria Gracia |
author_facet |
Senilliani, Maria Gracia Bruno, Cecilia Ines Brassiolo, Miguel Marcelo |
author_role |
author |
author2 |
Bruno, Cecilia Ines Brassiolo, Miguel Marcelo |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Dominant height Forestry Site quality |
topic |
Dominant height Forestry Site quality |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/4.1 https://purl.org/becyt/ford/4 |
dc.description.none.fl_txt_mv |
The classification of sites through curves of Site Index allows to predict the yield of the planted forests at a certain age of the stand and to plan cultural treatments. The goal of this research was to compare linear and non-linear models of fixed effects vs. mixed non-linear models to estimate the site index in plantations of Prosopis alba var Griseb in the irrigated area of the province of Santiago del Estero, Argentina using the guide curve method. The data used comes from temporary plots, permanent plots and growth data from the stem analysis of selected individuals based on their greater growth in height within the sampled areas. The registered variable for the evaluation of the site was the dominant Height (HD), defined as the average height of the 100 thickest trees per hectare. Considering that the source of data from repeated measurements on the same subject implies the presence of correlation and/or heteroscedasticity, it was proposed to evaluate statistical models that allow to properly representing the structure of the variance-covariance matrix, improving the accuracy in the adjustment. From the analysis of the results, it appears that the models non-linear mixed models have had better performance in the adjustment of the Site Index than linear and non-linear models of fixed effects. The most accurate model (smallest AIC and BIC) in the site index estimation was the mixed non-linear regression model of 'Gompertz', with structure of composite symmetry correlation and exponential heteroscedasticity.v.25 n.2 2019 Fil: Senilliani, Maria Gracia. Universidad Nacional de Santiago del Estero. Facultad de Ciencias Forestales; Argentina Fil: Bruno, Cecilia Ines. Instituto Nacional de Tecnologia Agropecuaria. Centro de Investigaciones Agropecuarias. Unidad de Fitopatologia y Modelizacion Agricola. Grupo Vinculado Catedra de Estadistica y Biometria de la Facultad de Ciencias Agropecuarias de la Universidad Nacional de Cordoba Al Ufyma | Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnologico Conicet - Cordoba. Unidad de Fitopatologia y Modelizacion Agricola. Grupo Vinculado Catedra de Estadistica y Biometria de la Facultad de Ciencias Agropecuarias de la Universidad Nacional de Cordoba Al Ufyma.; Argentina Fil: Brassiolo, Miguel Marcelo. Universidad Nacional de Santiago del Estero. Facultad de Ciencias Forestales; Argentina |
description |
The classification of sites through curves of Site Index allows to predict the yield of the planted forests at a certain age of the stand and to plan cultural treatments. The goal of this research was to compare linear and non-linear models of fixed effects vs. mixed non-linear models to estimate the site index in plantations of Prosopis alba var Griseb in the irrigated area of the province of Santiago del Estero, Argentina using the guide curve method. The data used comes from temporary plots, permanent plots and growth data from the stem analysis of selected individuals based on their greater growth in height within the sampled areas. The registered variable for the evaluation of the site was the dominant Height (HD), defined as the average height of the 100 thickest trees per hectare. Considering that the source of data from repeated measurements on the same subject implies the presence of correlation and/or heteroscedasticity, it was proposed to evaluate statistical models that allow to properly representing the structure of the variance-covariance matrix, improving the accuracy in the adjustment. From the analysis of the results, it appears that the models non-linear mixed models have had better performance in the adjustment of the Site Index than linear and non-linear models of fixed effects. The most accurate model (smallest AIC and BIC) in the site index estimation was the mixed non-linear regression model of 'Gompertz', with structure of composite symmetry correlation and exponential heteroscedasticity.v.25 n.2 2019 |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-06 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/106550 Senilliani, Maria Gracia; Bruno, Cecilia Ines; Brassiolo, Miguel Marcelo; Site index for Prosopis alba plantations in the semi-arid chaco through mixed models; Universidade Federal de Lavras; Cerne; 25; 2; 6-2019; 195-202 0104-7760 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/106550 |
identifier_str_mv |
Senilliani, Maria Gracia; Bruno, Cecilia Ines; Brassiolo, Miguel Marcelo; Site index for Prosopis alba plantations in the semi-arid chaco through mixed models; Universidade Federal de Lavras; Cerne; 25; 2; 6-2019; 195-202 0104-7760 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://cerne.ufla.br/site/index.php/CERNE/article/view/2035/1132 info:eu-repo/semantics/altIdentifier/doi/10.1590/01047760201925022622 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal de Lavras |
publisher.none.fl_str_mv |
Universidade Federal de Lavras |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842981103450718208 |
score |
12.48226 |