The 3D geometry of active region upflows deduced from their limb-to-limb evolution

Autores
Démoulin, Pascal; Baker, D.; Mandrini, Cristina Hemilse; van Driel Gesztelyi, Lidia
Año de publicación
2013
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We analyze the evolution of coronal plasma upflows from the edges of AR 10978, which has the best limb-to-limb data coverage with Hinode’s EUV Imaging Spectrometer (EIS). We find that the observed evolution is largely due to the solar rotation progressively changing the viewpoint of nearly stationary flows. From the systematic changes in the upflow regions as a function of distance from disc center, we deduce their 3D geometrical properties as inclination and angular spread in three coronal lines (Si vii, Fe xii, and Fe xv). In agreement with magnetic extrapolations, we find that the flows are thin, fan-like structures rooted in quasi separatrix layers (QSLs). The fans are tilted away from the AR center. The highest plasma velocities in these three spectral lines have similar magnitudes and their heights increase with temperature. The spatial location and extent of the upflow regions in the Si vii, Fe xii, and Fe xv lines are different owing to i) temperature stratification and ii) line of sight integration of the spectral profiles with significantly different backgrounds. We conclude that we sample the same flows at different temperatures. Further, we find that the evolution of line widths during the disc passage is compatible with a broad range of velocities in the flows. Everything considered, our results are compatible with the AR upflows originating from reconnections along QSLs between over-pressure AR loops and neighboring under-pressure loops. The flows are driven along magnetic field lines by a pressure gradient in a stratified atmosphere. Our interpretation of the above results is that, at any given time, we observe the superposition of flows created by successive reconnections, leading to a broad velocity distribution.
Fil: Démoulin, Pascal. Centre National de la Recherche Scientifique. Observatoire de Paris; Francia
Fil: Baker, D.. UCL-Mullard Space Science Laboratory; Reino Unido
Fil: Mandrini, Cristina Hemilse. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentina
Fil: van Driel Gesztelyi, Lidia. Konkoly Observatory; Hungría
Materia
Active Regions, Magnetic Fields
Active Regions, Velocity Fields
Corona, Active
Spectral Line, Broadening
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/17032

id CONICETDig_b67ab6cd749ade5ab7091e44e183a757
oai_identifier_str oai:ri.conicet.gov.ar:11336/17032
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling The 3D geometry of active region upflows deduced from their limb-to-limb evolutionDémoulin, PascalBaker, D.Mandrini, Cristina Hemilsevan Driel Gesztelyi, LidiaActive Regions, Magnetic FieldsActive Regions, Velocity FieldsCorona, ActiveSpectral Line, Broadeninghttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We analyze the evolution of coronal plasma upflows from the edges of AR 10978, which has the best limb-to-limb data coverage with Hinode’s EUV Imaging Spectrometer (EIS). We find that the observed evolution is largely due to the solar rotation progressively changing the viewpoint of nearly stationary flows. From the systematic changes in the upflow regions as a function of distance from disc center, we deduce their 3D geometrical properties as inclination and angular spread in three coronal lines (Si vii, Fe xii, and Fe xv). In agreement with magnetic extrapolations, we find that the flows are thin, fan-like structures rooted in quasi separatrix layers (QSLs). The fans are tilted away from the AR center. The highest plasma velocities in these three spectral lines have similar magnitudes and their heights increase with temperature. The spatial location and extent of the upflow regions in the Si vii, Fe xii, and Fe xv lines are different owing to i) temperature stratification and ii) line of sight integration of the spectral profiles with significantly different backgrounds. We conclude that we sample the same flows at different temperatures. Further, we find that the evolution of line widths during the disc passage is compatible with a broad range of velocities in the flows. Everything considered, our results are compatible with the AR upflows originating from reconnections along QSLs between over-pressure AR loops and neighboring under-pressure loops. The flows are driven along magnetic field lines by a pressure gradient in a stratified atmosphere. Our interpretation of the above results is that, at any given time, we observe the superposition of flows created by successive reconnections, leading to a broad velocity distribution.Fil: Démoulin, Pascal. Centre National de la Recherche Scientifique. Observatoire de Paris; FranciaFil: Baker, D.. UCL-Mullard Space Science Laboratory; Reino UnidoFil: Mandrini, Cristina Hemilse. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; ArgentinaFil: van Driel Gesztelyi, Lidia. Konkoly Observatory; HungríaSpringer2013-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/17032Démoulin, Pascal; Baker, D.; Mandrini, Cristina Hemilse; van Driel Gesztelyi, Lidia; The 3D geometry of active region upflows deduced from their limb-to-limb evolution; Springer; Solar Physics; 283; 2; 4-2013; 341-3670038-09381573-093Xenginfo:eu-repo/semantics/altIdentifier/doi/10.1007/s11207-013-0234-7info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s11207-013-0234-7info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/1211.5962info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:42:08Zoai:ri.conicet.gov.ar:11336/17032instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:42:08.453CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv The 3D geometry of active region upflows deduced from their limb-to-limb evolution
title The 3D geometry of active region upflows deduced from their limb-to-limb evolution
spellingShingle The 3D geometry of active region upflows deduced from their limb-to-limb evolution
Démoulin, Pascal
Active Regions, Magnetic Fields
Active Regions, Velocity Fields
Corona, Active
Spectral Line, Broadening
title_short The 3D geometry of active region upflows deduced from their limb-to-limb evolution
title_full The 3D geometry of active region upflows deduced from their limb-to-limb evolution
title_fullStr The 3D geometry of active region upflows deduced from their limb-to-limb evolution
title_full_unstemmed The 3D geometry of active region upflows deduced from their limb-to-limb evolution
title_sort The 3D geometry of active region upflows deduced from their limb-to-limb evolution
dc.creator.none.fl_str_mv Démoulin, Pascal
Baker, D.
Mandrini, Cristina Hemilse
van Driel Gesztelyi, Lidia
author Démoulin, Pascal
author_facet Démoulin, Pascal
Baker, D.
Mandrini, Cristina Hemilse
van Driel Gesztelyi, Lidia
author_role author
author2 Baker, D.
Mandrini, Cristina Hemilse
van Driel Gesztelyi, Lidia
author2_role author
author
author
dc.subject.none.fl_str_mv Active Regions, Magnetic Fields
Active Regions, Velocity Fields
Corona, Active
Spectral Line, Broadening
topic Active Regions, Magnetic Fields
Active Regions, Velocity Fields
Corona, Active
Spectral Line, Broadening
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We analyze the evolution of coronal plasma upflows from the edges of AR 10978, which has the best limb-to-limb data coverage with Hinode’s EUV Imaging Spectrometer (EIS). We find that the observed evolution is largely due to the solar rotation progressively changing the viewpoint of nearly stationary flows. From the systematic changes in the upflow regions as a function of distance from disc center, we deduce their 3D geometrical properties as inclination and angular spread in three coronal lines (Si vii, Fe xii, and Fe xv). In agreement with magnetic extrapolations, we find that the flows are thin, fan-like structures rooted in quasi separatrix layers (QSLs). The fans are tilted away from the AR center. The highest plasma velocities in these three spectral lines have similar magnitudes and their heights increase with temperature. The spatial location and extent of the upflow regions in the Si vii, Fe xii, and Fe xv lines are different owing to i) temperature stratification and ii) line of sight integration of the spectral profiles with significantly different backgrounds. We conclude that we sample the same flows at different temperatures. Further, we find that the evolution of line widths during the disc passage is compatible with a broad range of velocities in the flows. Everything considered, our results are compatible with the AR upflows originating from reconnections along QSLs between over-pressure AR loops and neighboring under-pressure loops. The flows are driven along magnetic field lines by a pressure gradient in a stratified atmosphere. Our interpretation of the above results is that, at any given time, we observe the superposition of flows created by successive reconnections, leading to a broad velocity distribution.
Fil: Démoulin, Pascal. Centre National de la Recherche Scientifique. Observatoire de Paris; Francia
Fil: Baker, D.. UCL-Mullard Space Science Laboratory; Reino Unido
Fil: Mandrini, Cristina Hemilse. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentina
Fil: van Driel Gesztelyi, Lidia. Konkoly Observatory; Hungría
description We analyze the evolution of coronal plasma upflows from the edges of AR 10978, which has the best limb-to-limb data coverage with Hinode’s EUV Imaging Spectrometer (EIS). We find that the observed evolution is largely due to the solar rotation progressively changing the viewpoint of nearly stationary flows. From the systematic changes in the upflow regions as a function of distance from disc center, we deduce their 3D geometrical properties as inclination and angular spread in three coronal lines (Si vii, Fe xii, and Fe xv). In agreement with magnetic extrapolations, we find that the flows are thin, fan-like structures rooted in quasi separatrix layers (QSLs). The fans are tilted away from the AR center. The highest plasma velocities in these three spectral lines have similar magnitudes and their heights increase with temperature. The spatial location and extent of the upflow regions in the Si vii, Fe xii, and Fe xv lines are different owing to i) temperature stratification and ii) line of sight integration of the spectral profiles with significantly different backgrounds. We conclude that we sample the same flows at different temperatures. Further, we find that the evolution of line widths during the disc passage is compatible with a broad range of velocities in the flows. Everything considered, our results are compatible with the AR upflows originating from reconnections along QSLs between over-pressure AR loops and neighboring under-pressure loops. The flows are driven along magnetic field lines by a pressure gradient in a stratified atmosphere. Our interpretation of the above results is that, at any given time, we observe the superposition of flows created by successive reconnections, leading to a broad velocity distribution.
publishDate 2013
dc.date.none.fl_str_mv 2013-04
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/17032
Démoulin, Pascal; Baker, D.; Mandrini, Cristina Hemilse; van Driel Gesztelyi, Lidia; The 3D geometry of active region upflows deduced from their limb-to-limb evolution; Springer; Solar Physics; 283; 2; 4-2013; 341-367
0038-0938
1573-093X
url http://hdl.handle.net/11336/17032
identifier_str_mv Démoulin, Pascal; Baker, D.; Mandrini, Cristina Hemilse; van Driel Gesztelyi, Lidia; The 3D geometry of active region upflows deduced from their limb-to-limb evolution; Springer; Solar Physics; 283; 2; 4-2013; 341-367
0038-0938
1573-093X
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1007/s11207-013-0234-7
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s11207-013-0234-7
info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/1211.5962
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614453619851264
score 13.070432