Real-World Variability in the Prediction of Intracranial Aneurysm Wall Shear Stress: The 2015 International Aneurysm CFD Challenge

Autores
Valen-Sendstad, Kristian; Bergersen, Aslak W.; Shimogonya, Yuji; Goubergrits, Leonid; Bruening, Jan; Pallares, Jordi; Cito, Salvatore; Piskin, Senol; Pekkan, Kerem; Geers, Arjan J.; Larrabide, Ignacio; Rapaka, Saikiran; Mihalef, Viorel; Fu, Wenyu; Qiao, Aike; Jain, Kartik; Roller, Sabine; Mardal, Kent-Andre; Kamakoti, Ramji; Spirka, Thomas; Ashton, Neil; Revell, Alistair; Aristokleous, Nicolas; Houston, J. Graeme; Tsuji, Masanori; Ishida, Fujimaro; Menon, Prahlad G.; Browne, Leonard D.; Broderick, Stephen; Shojima, Masaaki; Koizumi, Satoshi; Barbour, Michael; Aliseda, Alberto; Morales, Hernán G.; Lefèvre, Thierry; Hodis, Simona; Al-Smadi, Yahia M.; Tran, Justin S.; Marsden, Alison L.; Vaippummadhom, Sreeja; Einstein, G. Albert; Brown, Alistair G.; Debus, Kristian; Niizuma, Kuniyasu; Rashad, Sherif; Sugiyama, Shin-ichiro; Owais Khan, M.; Updegrove, Adam R.; Shadden, Shawn C.; Cornelissen, Bart M. W.; Majoie, Charles B. L. M.; Berg, Philipp; Saalfield, Sylvia; Kono, Kenichi; Steinman, David A.
Año de publicación
2018
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Purpose—Image-based computational fluid dynamics (CFD) is widely used to predict intracranial aneurysm wall shear stress (WSS), particularly with the goal of improving rupture risk assessment. Nevertheless, concern has been expressed over the variability of predicted WSS and inconsistent associations with rupture. Previous challenges, and studies from individual groups, have focused on individual aspects of the image-based CFD pipeline. The aim of this Challenge was to quantify the total variability of the whole pipeline. Methods—3D rotational angiography image volumes of five middle cerebral artery aneurysms were provided to participants, who were free to choose their segmentation methods boundary conditions, and CFD solver and settings. Participants were asked to fill out a questionnaire about their solution strategies and experience with aneurysm CFD, and provide surface distributions of WSS magnitude, from which we objectively derived a variety of hemodynamic parameters. Results—A total of 28 datasets were submitted, from 26 teams with varying levels of self-assessed experience. Wide variability of segmentations, CFD model extents, and inflow rates resulted in interquartile ranges of sac average WSS up to 56%, which reduced to < 30% after normalizing by parent artery WSS. Sac-maximum WSS and low shear area were more variable, while rank-ordering of cases by low or high shear showed only modest consensus among teams. Experience was not a significant predictor of variability. Conclusions—Wide variability exists in the prediction of intracranial aneurysm WSS. While segmentation and CFD solver techniques may be difficult to standardize across groups, our findings suggest that some of the variability in image-based CFD could be reduced by establishing guidelines for model extents, inflow rates, and blood properties, and by encouraging the reporting of normalized hemodynamic parameters.
Fil: Valen-Sendstad, Kristian. Simula Research Laboratory and Center for Cardiological Innovation; Noruega
Fil: Bergersen, Aslak W.. University of Oslo; Noruega
Fil: Shimogonya, Yuji. Nihon University; Japón
Fil: Goubergrits, Leonid. Charite´ – Universita¨tsmedizin Berlin; Alemania
Fil: Bruening, Jan. Charité – Universitätsmedizin Berlin; Alemania
Fil: Pallares, Jordi. Universitat Rovira I Virgili; España
Fil: Cito, Salvatore. Universitat Rovira I Virgili; España
Fil: Piskin, Senol. University Of Texas At San Antonio.; Estados Unidos
Fil: Pekkan, Kerem. Koc University; Turquía
Fil: Geers, Arjan J.. Universitat Pompeu Fabra; España
Fil: Larrabide, Ignacio. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Grupo de Plasmas Densos Magnetizados. Provincia de Buenos Aires. Gobernación. Comision de Investigaciones Científicas. Grupo de Plasmas Densos Magnetizados; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Rapaka, Saikiran. Siemens Medical Solutions USA Inc; Estados Unidos
Fil: Mihalef, Viorel. Siemens Medical Solutions USA Inc; Estados Unidos
Fil: Fu, Wenyu. Beijing Union University; China
Fil: Qiao, Aike. Beijing University of Technology; China
Fil: Jain, Kartik. Simula Research Laboratory and Center for Cardiological Innovation; Noruega. University of Siegen; Alemania. University of Zürich; Suiza
Fil: Roller, Sabine. University of Siegen; Alemania
Fil: Mardal, Kent-Andre. Simula Research Laboratory and Center for Cardiological Innovation; Noruega. University of Oslo; Noruega
Fil: Kamakoti, Ramji. Dassault Systemes; Francia
Fil: Spirka, Thomas. Simpleware Software Solutions; Reino Unido
Fil: Ashton, Neil. University of Oxford; Reino Unido
Fil: Revell, Alistair. University of Manchester; Reino Unido
Fil: Aristokleous, Nicolas. University of Limerick; Irlanda
Fil: Houston, J. Graeme. University of Dundee; Reino Unido
Fil: Tsuji, Masanori. Mie Chuo Medical Center; Japón
Fil: Ishida, Fujimaro. Mie Chuo Medical Center; Japón
Fil: Menon, Prahlad G.. University of Pittsburgh; Estados Unidos
Fil: Browne, Leonard D.. University of Limerick; Irlanda
Fil: Broderick, Stephen. University of Limerick; Irlanda
Fil: Shojima, Masaaki. University of Tokyo; Japón
Fil: Koizumi, Satoshi. University of Tokyo; Japón
Fil: Barbour, Michael. University of Washington; Estados Unidos
Fil: Aliseda, Alberto. University of Washington; Estados Unidos
Fil: Morales, Hernán G.. Medisys - Philips Research Paris; Francia
Fil: Lefèvre, Thierry. Medisys - Philips Research Paris; Francia
Fil: Hodis, Simona. Texas A&M University - Kingsville; Estados Unidos
Fil: Al-Smadi, Yahia M.. Jordan University of Science and Technology; Jordania
Fil: Tran, Justin S.. Stanford University; Estados Unidos
Fil: Marsden, Alison L.. Stanford University; Estados Unidos
Fil: Vaippummadhom, Sreeja. EinNel Technlogies; India
Fil: Einstein, G. Albert. EinNel Technlogies; India
Fil: Brown, Alistair G.. Siemens PLM Software; Estados Unidos
Fil: Debus, Kristian. Siemens PLM Software; Estados Unidos
Fil: Niizuma, Kuniyasu. Tohoku University; Japón
Fil: Rashad, Sherif. Tohoku University; Japón
Fil: Sugiyama, Shin-ichiro. Kohnan Hospital; Japón
Fil: Owais Khan, M.. University of Toronto; Canadá
Fil: Updegrove, Adam R.. University of California at Berkeley; Estados Unidos
Fil: Shadden, Shawn C.. University of California at Berkeley; Estados Unidos
Fil: Cornelissen, Bart M. W.. Academic Medical Center; Países Bajos
Fil: Majoie, Charles B. L. M.. Academic Medical Center; Países Bajos
Fil: Berg, Philipp. University of Magdeburg; Alemania
Fil: Saalfield, Sylvia. University of Magdeburg; Alemania
Fil: Kono, Kenichi. Wakayama Rosai Hospital; Japón
Fil: Steinman, David A.. University of Toronto; Canadá
Materia
INTRACRANIAL ANEURYSM
PATIENT-SPECIFIC MODELLING
WALL SHEAR STRESS
RUPTURE RISK
UNCERTAINTY QUANTIFICATION
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/112699

id CONICETDig_b5c358446fdd0352af994f8a72f345e1
oai_identifier_str oai:ri.conicet.gov.ar:11336/112699
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Real-World Variability in the Prediction of Intracranial Aneurysm Wall Shear Stress: The 2015 International Aneurysm CFD ChallengeValen-Sendstad, KristianBergersen, Aslak W.Shimogonya, YujiGoubergrits, LeonidBruening, JanPallares, JordiCito, SalvatorePiskin, SenolPekkan, KeremGeers, Arjan J.Larrabide, IgnacioRapaka, SaikiranMihalef, ViorelFu, WenyuQiao, AikeJain, KartikRoller, SabineMardal, Kent-AndreKamakoti, RamjiSpirka, ThomasAshton, NeilRevell, AlistairAristokleous, NicolasHouston, J. GraemeTsuji, MasanoriIshida, FujimaroMenon, Prahlad G.Browne, Leonard D.Broderick, StephenShojima, MasaakiKoizumi, SatoshiBarbour, MichaelAliseda, AlbertoMorales, Hernán G.Lefèvre, ThierryHodis, SimonaAl-Smadi, Yahia M.Tran, Justin S.Marsden, Alison L.Vaippummadhom, SreejaEinstein, G. AlbertBrown, Alistair G.Debus, KristianNiizuma, KuniyasuRashad, SherifSugiyama, Shin-ichiroOwais Khan, M.Updegrove, Adam R.Shadden, Shawn C.Cornelissen, Bart M. W.Majoie, Charles B. L. M.Berg, PhilippSaalfield, SylviaKono, KenichiSteinman, David A.INTRACRANIAL ANEURYSMPATIENT-SPECIFIC MODELLINGWALL SHEAR STRESSRUPTURE RISKUNCERTAINTY QUANTIFICATIONhttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1Purpose—Image-based computational fluid dynamics (CFD) is widely used to predict intracranial aneurysm wall shear stress (WSS), particularly with the goal of improving rupture risk assessment. Nevertheless, concern has been expressed over the variability of predicted WSS and inconsistent associations with rupture. Previous challenges, and studies from individual groups, have focused on individual aspects of the image-based CFD pipeline. The aim of this Challenge was to quantify the total variability of the whole pipeline. Methods—3D rotational angiography image volumes of five middle cerebral artery aneurysms were provided to participants, who were free to choose their segmentation methods boundary conditions, and CFD solver and settings. Participants were asked to fill out a questionnaire about their solution strategies and experience with aneurysm CFD, and provide surface distributions of WSS magnitude, from which we objectively derived a variety of hemodynamic parameters. Results—A total of 28 datasets were submitted, from 26 teams with varying levels of self-assessed experience. Wide variability of segmentations, CFD model extents, and inflow rates resulted in interquartile ranges of sac average WSS up to 56%, which reduced to < 30% after normalizing by parent artery WSS. Sac-maximum WSS and low shear area were more variable, while rank-ordering of cases by low or high shear showed only modest consensus among teams. Experience was not a significant predictor of variability. Conclusions—Wide variability exists in the prediction of intracranial aneurysm WSS. While segmentation and CFD solver techniques may be difficult to standardize across groups, our findings suggest that some of the variability in image-based CFD could be reduced by establishing guidelines for model extents, inflow rates, and blood properties, and by encouraging the reporting of normalized hemodynamic parameters.Fil: Valen-Sendstad, Kristian. Simula Research Laboratory and Center for Cardiological Innovation; NoruegaFil: Bergersen, Aslak W.. University of Oslo; NoruegaFil: Shimogonya, Yuji. Nihon University; JapónFil: Goubergrits, Leonid. Charite´ – Universita¨tsmedizin Berlin; AlemaniaFil: Bruening, Jan. Charité – Universitätsmedizin Berlin; AlemaniaFil: Pallares, Jordi. Universitat Rovira I Virgili; EspañaFil: Cito, Salvatore. Universitat Rovira I Virgili; EspañaFil: Piskin, Senol. University Of Texas At San Antonio.; Estados UnidosFil: Pekkan, Kerem. Koc University; TurquíaFil: Geers, Arjan J.. Universitat Pompeu Fabra; EspañaFil: Larrabide, Ignacio. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Grupo de Plasmas Densos Magnetizados. Provincia de Buenos Aires. Gobernación. Comision de Investigaciones Científicas. Grupo de Plasmas Densos Magnetizados; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Rapaka, Saikiran. Siemens Medical Solutions USA Inc; Estados UnidosFil: Mihalef, Viorel. Siemens Medical Solutions USA Inc; Estados UnidosFil: Fu, Wenyu. Beijing Union University; ChinaFil: Qiao, Aike. Beijing University of Technology; ChinaFil: Jain, Kartik. Simula Research Laboratory and Center for Cardiological Innovation; Noruega. University of Siegen; Alemania. University of Zürich; SuizaFil: Roller, Sabine. University of Siegen; AlemaniaFil: Mardal, Kent-Andre. Simula Research Laboratory and Center for Cardiological Innovation; Noruega. University of Oslo; NoruegaFil: Kamakoti, Ramji. Dassault Systemes; FranciaFil: Spirka, Thomas. Simpleware Software Solutions; Reino UnidoFil: Ashton, Neil. University of Oxford; Reino UnidoFil: Revell, Alistair. University of Manchester; Reino UnidoFil: Aristokleous, Nicolas. University of Limerick; IrlandaFil: Houston, J. Graeme. University of Dundee; Reino UnidoFil: Tsuji, Masanori. Mie Chuo Medical Center; JapónFil: Ishida, Fujimaro. Mie Chuo Medical Center; JapónFil: Menon, Prahlad G.. University of Pittsburgh; Estados UnidosFil: Browne, Leonard D.. University of Limerick; IrlandaFil: Broderick, Stephen. University of Limerick; IrlandaFil: Shojima, Masaaki. University of Tokyo; JapónFil: Koizumi, Satoshi. University of Tokyo; JapónFil: Barbour, Michael. University of Washington; Estados UnidosFil: Aliseda, Alberto. University of Washington; Estados UnidosFil: Morales, Hernán G.. Medisys - Philips Research Paris; FranciaFil: Lefèvre, Thierry. Medisys - Philips Research Paris; FranciaFil: Hodis, Simona. Texas A&M University - Kingsville; Estados UnidosFil: Al-Smadi, Yahia M.. Jordan University of Science and Technology; JordaniaFil: Tran, Justin S.. Stanford University; Estados UnidosFil: Marsden, Alison L.. Stanford University; Estados UnidosFil: Vaippummadhom, Sreeja. EinNel Technlogies; IndiaFil: Einstein, G. Albert. EinNel Technlogies; IndiaFil: Brown, Alistair G.. Siemens PLM Software; Estados UnidosFil: Debus, Kristian. Siemens PLM Software; Estados UnidosFil: Niizuma, Kuniyasu. Tohoku University; JapónFil: Rashad, Sherif. Tohoku University; JapónFil: Sugiyama, Shin-ichiro. Kohnan Hospital; JapónFil: Owais Khan, M.. University of Toronto; CanadáFil: Updegrove, Adam R.. University of California at Berkeley; Estados UnidosFil: Shadden, Shawn C.. University of California at Berkeley; Estados UnidosFil: Cornelissen, Bart M. W.. Academic Medical Center; Países BajosFil: Majoie, Charles B. L. M.. Academic Medical Center; Países BajosFil: Berg, Philipp. University of Magdeburg; AlemaniaFil: Saalfield, Sylvia. University of Magdeburg; AlemaniaFil: Kono, Kenichi. Wakayama Rosai Hospital; JapónFil: Steinman, David A.. University of Toronto; CanadáSpringer2018-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/112699Valen-Sendstad, Kristian; Bergersen, Aslak W.; Shimogonya, Yuji; Goubergrits, Leonid; Bruening, Jan; et al.; Real-World Variability in the Prediction of Intracranial Aneurysm Wall Shear Stress: The 2015 International Aneurysm CFD Challenge; Springer; Cardiovascular Engineering and Technology; -; 9; 9-2018; 544-5641869-408XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://link.springer.com/10.1007/s13239-018-00374-2info:eu-repo/semantics/altIdentifier/doi/10.1007/s13239-018-00374-2info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:46:37Zoai:ri.conicet.gov.ar:11336/112699instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:46:38.173CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Real-World Variability in the Prediction of Intracranial Aneurysm Wall Shear Stress: The 2015 International Aneurysm CFD Challenge
title Real-World Variability in the Prediction of Intracranial Aneurysm Wall Shear Stress: The 2015 International Aneurysm CFD Challenge
spellingShingle Real-World Variability in the Prediction of Intracranial Aneurysm Wall Shear Stress: The 2015 International Aneurysm CFD Challenge
Valen-Sendstad, Kristian
INTRACRANIAL ANEURYSM
PATIENT-SPECIFIC MODELLING
WALL SHEAR STRESS
RUPTURE RISK
UNCERTAINTY QUANTIFICATION
title_short Real-World Variability in the Prediction of Intracranial Aneurysm Wall Shear Stress: The 2015 International Aneurysm CFD Challenge
title_full Real-World Variability in the Prediction of Intracranial Aneurysm Wall Shear Stress: The 2015 International Aneurysm CFD Challenge
title_fullStr Real-World Variability in the Prediction of Intracranial Aneurysm Wall Shear Stress: The 2015 International Aneurysm CFD Challenge
title_full_unstemmed Real-World Variability in the Prediction of Intracranial Aneurysm Wall Shear Stress: The 2015 International Aneurysm CFD Challenge
title_sort Real-World Variability in the Prediction of Intracranial Aneurysm Wall Shear Stress: The 2015 International Aneurysm CFD Challenge
dc.creator.none.fl_str_mv Valen-Sendstad, Kristian
Bergersen, Aslak W.
Shimogonya, Yuji
Goubergrits, Leonid
Bruening, Jan
Pallares, Jordi
Cito, Salvatore
Piskin, Senol
Pekkan, Kerem
Geers, Arjan J.
Larrabide, Ignacio
Rapaka, Saikiran
Mihalef, Viorel
Fu, Wenyu
Qiao, Aike
Jain, Kartik
Roller, Sabine
Mardal, Kent-Andre
Kamakoti, Ramji
Spirka, Thomas
Ashton, Neil
Revell, Alistair
Aristokleous, Nicolas
Houston, J. Graeme
Tsuji, Masanori
Ishida, Fujimaro
Menon, Prahlad G.
Browne, Leonard D.
Broderick, Stephen
Shojima, Masaaki
Koizumi, Satoshi
Barbour, Michael
Aliseda, Alberto
Morales, Hernán G.
Lefèvre, Thierry
Hodis, Simona
Al-Smadi, Yahia M.
Tran, Justin S.
Marsden, Alison L.
Vaippummadhom, Sreeja
Einstein, G. Albert
Brown, Alistair G.
Debus, Kristian
Niizuma, Kuniyasu
Rashad, Sherif
Sugiyama, Shin-ichiro
Owais Khan, M.
Updegrove, Adam R.
Shadden, Shawn C.
Cornelissen, Bart M. W.
Majoie, Charles B. L. M.
Berg, Philipp
Saalfield, Sylvia
Kono, Kenichi
Steinman, David A.
author Valen-Sendstad, Kristian
author_facet Valen-Sendstad, Kristian
Bergersen, Aslak W.
Shimogonya, Yuji
Goubergrits, Leonid
Bruening, Jan
Pallares, Jordi
Cito, Salvatore
Piskin, Senol
Pekkan, Kerem
Geers, Arjan J.
Larrabide, Ignacio
Rapaka, Saikiran
Mihalef, Viorel
Fu, Wenyu
Qiao, Aike
Jain, Kartik
Roller, Sabine
Mardal, Kent-Andre
Kamakoti, Ramji
Spirka, Thomas
Ashton, Neil
Revell, Alistair
Aristokleous, Nicolas
Houston, J. Graeme
Tsuji, Masanori
Ishida, Fujimaro
Menon, Prahlad G.
Browne, Leonard D.
Broderick, Stephen
Shojima, Masaaki
Koizumi, Satoshi
Barbour, Michael
Aliseda, Alberto
Morales, Hernán G.
Lefèvre, Thierry
Hodis, Simona
Al-Smadi, Yahia M.
Tran, Justin S.
Marsden, Alison L.
Vaippummadhom, Sreeja
Einstein, G. Albert
Brown, Alistair G.
Debus, Kristian
Niizuma, Kuniyasu
Rashad, Sherif
Sugiyama, Shin-ichiro
Owais Khan, M.
Updegrove, Adam R.
Shadden, Shawn C.
Cornelissen, Bart M. W.
Majoie, Charles B. L. M.
Berg, Philipp
Saalfield, Sylvia
Kono, Kenichi
Steinman, David A.
author_role author
author2 Bergersen, Aslak W.
Shimogonya, Yuji
Goubergrits, Leonid
Bruening, Jan
Pallares, Jordi
Cito, Salvatore
Piskin, Senol
Pekkan, Kerem
Geers, Arjan J.
Larrabide, Ignacio
Rapaka, Saikiran
Mihalef, Viorel
Fu, Wenyu
Qiao, Aike
Jain, Kartik
Roller, Sabine
Mardal, Kent-Andre
Kamakoti, Ramji
Spirka, Thomas
Ashton, Neil
Revell, Alistair
Aristokleous, Nicolas
Houston, J. Graeme
Tsuji, Masanori
Ishida, Fujimaro
Menon, Prahlad G.
Browne, Leonard D.
Broderick, Stephen
Shojima, Masaaki
Koizumi, Satoshi
Barbour, Michael
Aliseda, Alberto
Morales, Hernán G.
Lefèvre, Thierry
Hodis, Simona
Al-Smadi, Yahia M.
Tran, Justin S.
Marsden, Alison L.
Vaippummadhom, Sreeja
Einstein, G. Albert
Brown, Alistair G.
Debus, Kristian
Niizuma, Kuniyasu
Rashad, Sherif
Sugiyama, Shin-ichiro
Owais Khan, M.
Updegrove, Adam R.
Shadden, Shawn C.
Cornelissen, Bart M. W.
Majoie, Charles B. L. M.
Berg, Philipp
Saalfield, Sylvia
Kono, Kenichi
Steinman, David A.
author2_role author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
dc.subject.none.fl_str_mv INTRACRANIAL ANEURYSM
PATIENT-SPECIFIC MODELLING
WALL SHEAR STRESS
RUPTURE RISK
UNCERTAINTY QUANTIFICATION
topic INTRACRANIAL ANEURYSM
PATIENT-SPECIFIC MODELLING
WALL SHEAR STRESS
RUPTURE RISK
UNCERTAINTY QUANTIFICATION
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.2
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Purpose—Image-based computational fluid dynamics (CFD) is widely used to predict intracranial aneurysm wall shear stress (WSS), particularly with the goal of improving rupture risk assessment. Nevertheless, concern has been expressed over the variability of predicted WSS and inconsistent associations with rupture. Previous challenges, and studies from individual groups, have focused on individual aspects of the image-based CFD pipeline. The aim of this Challenge was to quantify the total variability of the whole pipeline. Methods—3D rotational angiography image volumes of five middle cerebral artery aneurysms were provided to participants, who were free to choose their segmentation methods boundary conditions, and CFD solver and settings. Participants were asked to fill out a questionnaire about their solution strategies and experience with aneurysm CFD, and provide surface distributions of WSS magnitude, from which we objectively derived a variety of hemodynamic parameters. Results—A total of 28 datasets were submitted, from 26 teams with varying levels of self-assessed experience. Wide variability of segmentations, CFD model extents, and inflow rates resulted in interquartile ranges of sac average WSS up to 56%, which reduced to < 30% after normalizing by parent artery WSS. Sac-maximum WSS and low shear area were more variable, while rank-ordering of cases by low or high shear showed only modest consensus among teams. Experience was not a significant predictor of variability. Conclusions—Wide variability exists in the prediction of intracranial aneurysm WSS. While segmentation and CFD solver techniques may be difficult to standardize across groups, our findings suggest that some of the variability in image-based CFD could be reduced by establishing guidelines for model extents, inflow rates, and blood properties, and by encouraging the reporting of normalized hemodynamic parameters.
Fil: Valen-Sendstad, Kristian. Simula Research Laboratory and Center for Cardiological Innovation; Noruega
Fil: Bergersen, Aslak W.. University of Oslo; Noruega
Fil: Shimogonya, Yuji. Nihon University; Japón
Fil: Goubergrits, Leonid. Charite´ – Universita¨tsmedizin Berlin; Alemania
Fil: Bruening, Jan. Charité – Universitätsmedizin Berlin; Alemania
Fil: Pallares, Jordi. Universitat Rovira I Virgili; España
Fil: Cito, Salvatore. Universitat Rovira I Virgili; España
Fil: Piskin, Senol. University Of Texas At San Antonio.; Estados Unidos
Fil: Pekkan, Kerem. Koc University; Turquía
Fil: Geers, Arjan J.. Universitat Pompeu Fabra; España
Fil: Larrabide, Ignacio. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Grupo de Plasmas Densos Magnetizados. Provincia de Buenos Aires. Gobernación. Comision de Investigaciones Científicas. Grupo de Plasmas Densos Magnetizados; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Rapaka, Saikiran. Siemens Medical Solutions USA Inc; Estados Unidos
Fil: Mihalef, Viorel. Siemens Medical Solutions USA Inc; Estados Unidos
Fil: Fu, Wenyu. Beijing Union University; China
Fil: Qiao, Aike. Beijing University of Technology; China
Fil: Jain, Kartik. Simula Research Laboratory and Center for Cardiological Innovation; Noruega. University of Siegen; Alemania. University of Zürich; Suiza
Fil: Roller, Sabine. University of Siegen; Alemania
Fil: Mardal, Kent-Andre. Simula Research Laboratory and Center for Cardiological Innovation; Noruega. University of Oslo; Noruega
Fil: Kamakoti, Ramji. Dassault Systemes; Francia
Fil: Spirka, Thomas. Simpleware Software Solutions; Reino Unido
Fil: Ashton, Neil. University of Oxford; Reino Unido
Fil: Revell, Alistair. University of Manchester; Reino Unido
Fil: Aristokleous, Nicolas. University of Limerick; Irlanda
Fil: Houston, J. Graeme. University of Dundee; Reino Unido
Fil: Tsuji, Masanori. Mie Chuo Medical Center; Japón
Fil: Ishida, Fujimaro. Mie Chuo Medical Center; Japón
Fil: Menon, Prahlad G.. University of Pittsburgh; Estados Unidos
Fil: Browne, Leonard D.. University of Limerick; Irlanda
Fil: Broderick, Stephen. University of Limerick; Irlanda
Fil: Shojima, Masaaki. University of Tokyo; Japón
Fil: Koizumi, Satoshi. University of Tokyo; Japón
Fil: Barbour, Michael. University of Washington; Estados Unidos
Fil: Aliseda, Alberto. University of Washington; Estados Unidos
Fil: Morales, Hernán G.. Medisys - Philips Research Paris; Francia
Fil: Lefèvre, Thierry. Medisys - Philips Research Paris; Francia
Fil: Hodis, Simona. Texas A&M University - Kingsville; Estados Unidos
Fil: Al-Smadi, Yahia M.. Jordan University of Science and Technology; Jordania
Fil: Tran, Justin S.. Stanford University; Estados Unidos
Fil: Marsden, Alison L.. Stanford University; Estados Unidos
Fil: Vaippummadhom, Sreeja. EinNel Technlogies; India
Fil: Einstein, G. Albert. EinNel Technlogies; India
Fil: Brown, Alistair G.. Siemens PLM Software; Estados Unidos
Fil: Debus, Kristian. Siemens PLM Software; Estados Unidos
Fil: Niizuma, Kuniyasu. Tohoku University; Japón
Fil: Rashad, Sherif. Tohoku University; Japón
Fil: Sugiyama, Shin-ichiro. Kohnan Hospital; Japón
Fil: Owais Khan, M.. University of Toronto; Canadá
Fil: Updegrove, Adam R.. University of California at Berkeley; Estados Unidos
Fil: Shadden, Shawn C.. University of California at Berkeley; Estados Unidos
Fil: Cornelissen, Bart M. W.. Academic Medical Center; Países Bajos
Fil: Majoie, Charles B. L. M.. Academic Medical Center; Países Bajos
Fil: Berg, Philipp. University of Magdeburg; Alemania
Fil: Saalfield, Sylvia. University of Magdeburg; Alemania
Fil: Kono, Kenichi. Wakayama Rosai Hospital; Japón
Fil: Steinman, David A.. University of Toronto; Canadá
description Purpose—Image-based computational fluid dynamics (CFD) is widely used to predict intracranial aneurysm wall shear stress (WSS), particularly with the goal of improving rupture risk assessment. Nevertheless, concern has been expressed over the variability of predicted WSS and inconsistent associations with rupture. Previous challenges, and studies from individual groups, have focused on individual aspects of the image-based CFD pipeline. The aim of this Challenge was to quantify the total variability of the whole pipeline. Methods—3D rotational angiography image volumes of five middle cerebral artery aneurysms were provided to participants, who were free to choose their segmentation methods boundary conditions, and CFD solver and settings. Participants were asked to fill out a questionnaire about their solution strategies and experience with aneurysm CFD, and provide surface distributions of WSS magnitude, from which we objectively derived a variety of hemodynamic parameters. Results—A total of 28 datasets were submitted, from 26 teams with varying levels of self-assessed experience. Wide variability of segmentations, CFD model extents, and inflow rates resulted in interquartile ranges of sac average WSS up to 56%, which reduced to < 30% after normalizing by parent artery WSS. Sac-maximum WSS and low shear area were more variable, while rank-ordering of cases by low or high shear showed only modest consensus among teams. Experience was not a significant predictor of variability. Conclusions—Wide variability exists in the prediction of intracranial aneurysm WSS. While segmentation and CFD solver techniques may be difficult to standardize across groups, our findings suggest that some of the variability in image-based CFD could be reduced by establishing guidelines for model extents, inflow rates, and blood properties, and by encouraging the reporting of normalized hemodynamic parameters.
publishDate 2018
dc.date.none.fl_str_mv 2018-09
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/112699
Valen-Sendstad, Kristian; Bergersen, Aslak W.; Shimogonya, Yuji; Goubergrits, Leonid; Bruening, Jan; et al.; Real-World Variability in the Prediction of Intracranial Aneurysm Wall Shear Stress: The 2015 International Aneurysm CFD Challenge; Springer; Cardiovascular Engineering and Technology; -; 9; 9-2018; 544-564
1869-408X
CONICET Digital
CONICET
url http://hdl.handle.net/11336/112699
identifier_str_mv Valen-Sendstad, Kristian; Bergersen, Aslak W.; Shimogonya, Yuji; Goubergrits, Leonid; Bruening, Jan; et al.; Real-World Variability in the Prediction of Intracranial Aneurysm Wall Shear Stress: The 2015 International Aneurysm CFD Challenge; Springer; Cardiovascular Engineering and Technology; -; 9; 9-2018; 544-564
1869-408X
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://link.springer.com/10.1007/s13239-018-00374-2
info:eu-repo/semantics/altIdentifier/doi/10.1007/s13239-018-00374-2
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614508325109760
score 13.070432