Light curve and spectral modelling of the type IIb SN 2020acat: Evidence for a strong Ni bubble effect on the diffusion time
- Autores
- Ergon, Mattias; Lundqvist, Peter; Fransson, Claes; Kuncarayakti, Hanindyo; Das, Kaustav K.; De, Kishalay; Ferrari, Lucía; Fremling, Christoffer; Medler, Kyle; Maeda, Keiichi; Pastorello, Andrea; Sollerman, Jesper; Stritzinger, Maximilian
- Año de publicación
- 2024
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We use the light-curve and spectral synthesis code JEKYLL to calculate a set of macroscopically mixed type IIb supernova (SN) models, which are compared to both previously published and new late-phase observations of SN 2020acat. The models differ in the initial mass, in the radial mixing and expansion of the radioactive material, and in the properties of the hydrogen envelope. The best match to the photospheric and nebular spectra and light curves of SN 2020acat is found for a model with an initial mass of 17 M⊙, strong radial mixing and expansion of the radioactive material, and a 0.1 M⊙ hydrogen envelope with a low hydrogen mass fraction of 0.27. The most interesting result is that strong expansion of the clumps containing radioactive material seems to be required to fit the observations of SN 2020acat both in the diffusion phase and in the nebular phase. These Ni bubbles are expected to expand due to heating from radioactive decays, but the degree of expansion is poorly constrained. Without strong expansion, there is a tension between the diffusion phase and the subsequent evolution, and models that fit the nebular phase produce a diffusion peak that is too broad. The diffusion-phase light curve is sensitive to the expansion of the Ni bubbles because the resulting Swiss-cheese-like geometry decreases the effective opacity and therefore the diffusion time. This effect has not been taken into account in previous light-curve modelling of stripped-envelope SNe, which may lead to a systematic underestimate of their ejecta masses. In addition to strong expansion, strong mixing of the radioactive material also seems to be required to fit the diffusion peak. It should be emphasized, however, that JEKYLL is limited to a geometry that is spherically symmetric on average, and large-scale asymmetries may also play a role. The relatively high initial mass found for the progenitor of SN 2020acat places it at the upper end of the mass distribution of type IIb SN progenitors, and a single-star origin cannot be excluded.
Fil: Ergon, Mattias. Stockholms Universitet; Suecia
Fil: Lundqvist, Peter. Stockholms Universitet; Suecia
Fil: Fransson, Claes. Stockholms Universitet; Suecia
Fil: Kuncarayakti, Hanindyo. University of Turku; Finlandia
Fil: Das, Kaustav K.. California Institute of Technology; Estados Unidos
Fil: De, Kishalay. Massachusetts Institute of Technology; Estados Unidos
Fil: Ferrari, Lucía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; Argentina
Fil: Fremling, Christoffer. California Institute of Technology; Estados Unidos
Fil: Medler, Kyle. Liverpool John Moores University; Reino Unido
Fil: Maeda, Keiichi. Kyoto University; Japón
Fil: Pastorello, Andrea. Istituto Nazionale di Astrofisica; Italia
Fil: Sollerman, Jesper. Stockholms Universitet; Suecia
Fil: Stritzinger, Maximilian. University Aarhus; Dinamarca - Materia
-
Supernovae: individual: SN 2020acat
Supernovae: general
Radiative transfer - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/256846
Ver los metadatos del registro completo
id |
CONICETDig_b59a4448ce6c5cc9114f354547d46980 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/256846 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Light curve and spectral modelling of the type IIb SN 2020acat: Evidence for a strong Ni bubble effect on the diffusion timeErgon, MattiasLundqvist, PeterFransson, ClaesKuncarayakti, HanindyoDas, Kaustav K.De, KishalayFerrari, LucíaFremling, ChristofferMedler, KyleMaeda, KeiichiPastorello, AndreaSollerman, JesperStritzinger, MaximilianSupernovae: individual: SN 2020acatSupernovae: generalRadiative transferhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We use the light-curve and spectral synthesis code JEKYLL to calculate a set of macroscopically mixed type IIb supernova (SN) models, which are compared to both previously published and new late-phase observations of SN 2020acat. The models differ in the initial mass, in the radial mixing and expansion of the radioactive material, and in the properties of the hydrogen envelope. The best match to the photospheric and nebular spectra and light curves of SN 2020acat is found for a model with an initial mass of 17 M⊙, strong radial mixing and expansion of the radioactive material, and a 0.1 M⊙ hydrogen envelope with a low hydrogen mass fraction of 0.27. The most interesting result is that strong expansion of the clumps containing radioactive material seems to be required to fit the observations of SN 2020acat both in the diffusion phase and in the nebular phase. These Ni bubbles are expected to expand due to heating from radioactive decays, but the degree of expansion is poorly constrained. Without strong expansion, there is a tension between the diffusion phase and the subsequent evolution, and models that fit the nebular phase produce a diffusion peak that is too broad. The diffusion-phase light curve is sensitive to the expansion of the Ni bubbles because the resulting Swiss-cheese-like geometry decreases the effective opacity and therefore the diffusion time. This effect has not been taken into account in previous light-curve modelling of stripped-envelope SNe, which may lead to a systematic underestimate of their ejecta masses. In addition to strong expansion, strong mixing of the radioactive material also seems to be required to fit the diffusion peak. It should be emphasized, however, that JEKYLL is limited to a geometry that is spherically symmetric on average, and large-scale asymmetries may also play a role. The relatively high initial mass found for the progenitor of SN 2020acat places it at the upper end of the mass distribution of type IIb SN progenitors, and a single-star origin cannot be excluded.Fil: Ergon, Mattias. Stockholms Universitet; SueciaFil: Lundqvist, Peter. Stockholms Universitet; SueciaFil: Fransson, Claes. Stockholms Universitet; SueciaFil: Kuncarayakti, Hanindyo. University of Turku; FinlandiaFil: Das, Kaustav K.. California Institute of Technology; Estados UnidosFil: De, Kishalay. Massachusetts Institute of Technology; Estados UnidosFil: Ferrari, Lucía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; ArgentinaFil: Fremling, Christoffer. California Institute of Technology; Estados UnidosFil: Medler, Kyle. Liverpool John Moores University; Reino UnidoFil: Maeda, Keiichi. Kyoto University; JapónFil: Pastorello, Andrea. Istituto Nazionale di Astrofisica; ItaliaFil: Sollerman, Jesper. Stockholms Universitet; SueciaFil: Stritzinger, Maximilian. University Aarhus; DinamarcaEDP Sciences2024-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/256846Ergon, Mattias; Lundqvist, Peter; Fransson, Claes; Kuncarayakti, Hanindyo; Das, Kaustav K.; et al.; Light curve and spectral modelling of the type IIb SN 2020acat: Evidence for a strong Ni bubble effect on the diffusion time; EDP Sciences; Astronomy and Astrophysics; 683; A241; 3-2024; 1-280004-6361CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.aanda.org/10.1051/0004-6361/202346718info:eu-repo/semantics/altIdentifier/doi/10.1051/0004-6361/202346718info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:20:35Zoai:ri.conicet.gov.ar:11336/256846instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:20:35.283CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Light curve and spectral modelling of the type IIb SN 2020acat: Evidence for a strong Ni bubble effect on the diffusion time |
title |
Light curve and spectral modelling of the type IIb SN 2020acat: Evidence for a strong Ni bubble effect on the diffusion time |
spellingShingle |
Light curve and spectral modelling of the type IIb SN 2020acat: Evidence for a strong Ni bubble effect on the diffusion time Ergon, Mattias Supernovae: individual: SN 2020acat Supernovae: general Radiative transfer |
title_short |
Light curve and spectral modelling of the type IIb SN 2020acat: Evidence for a strong Ni bubble effect on the diffusion time |
title_full |
Light curve and spectral modelling of the type IIb SN 2020acat: Evidence for a strong Ni bubble effect on the diffusion time |
title_fullStr |
Light curve and spectral modelling of the type IIb SN 2020acat: Evidence for a strong Ni bubble effect on the diffusion time |
title_full_unstemmed |
Light curve and spectral modelling of the type IIb SN 2020acat: Evidence for a strong Ni bubble effect on the diffusion time |
title_sort |
Light curve and spectral modelling of the type IIb SN 2020acat: Evidence for a strong Ni bubble effect on the diffusion time |
dc.creator.none.fl_str_mv |
Ergon, Mattias Lundqvist, Peter Fransson, Claes Kuncarayakti, Hanindyo Das, Kaustav K. De, Kishalay Ferrari, Lucía Fremling, Christoffer Medler, Kyle Maeda, Keiichi Pastorello, Andrea Sollerman, Jesper Stritzinger, Maximilian |
author |
Ergon, Mattias |
author_facet |
Ergon, Mattias Lundqvist, Peter Fransson, Claes Kuncarayakti, Hanindyo Das, Kaustav K. De, Kishalay Ferrari, Lucía Fremling, Christoffer Medler, Kyle Maeda, Keiichi Pastorello, Andrea Sollerman, Jesper Stritzinger, Maximilian |
author_role |
author |
author2 |
Lundqvist, Peter Fransson, Claes Kuncarayakti, Hanindyo Das, Kaustav K. De, Kishalay Ferrari, Lucía Fremling, Christoffer Medler, Kyle Maeda, Keiichi Pastorello, Andrea Sollerman, Jesper Stritzinger, Maximilian |
author2_role |
author author author author author author author author author author author author |
dc.subject.none.fl_str_mv |
Supernovae: individual: SN 2020acat Supernovae: general Radiative transfer |
topic |
Supernovae: individual: SN 2020acat Supernovae: general Radiative transfer |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We use the light-curve and spectral synthesis code JEKYLL to calculate a set of macroscopically mixed type IIb supernova (SN) models, which are compared to both previously published and new late-phase observations of SN 2020acat. The models differ in the initial mass, in the radial mixing and expansion of the radioactive material, and in the properties of the hydrogen envelope. The best match to the photospheric and nebular spectra and light curves of SN 2020acat is found for a model with an initial mass of 17 M⊙, strong radial mixing and expansion of the radioactive material, and a 0.1 M⊙ hydrogen envelope with a low hydrogen mass fraction of 0.27. The most interesting result is that strong expansion of the clumps containing radioactive material seems to be required to fit the observations of SN 2020acat both in the diffusion phase and in the nebular phase. These Ni bubbles are expected to expand due to heating from radioactive decays, but the degree of expansion is poorly constrained. Without strong expansion, there is a tension between the diffusion phase and the subsequent evolution, and models that fit the nebular phase produce a diffusion peak that is too broad. The diffusion-phase light curve is sensitive to the expansion of the Ni bubbles because the resulting Swiss-cheese-like geometry decreases the effective opacity and therefore the diffusion time. This effect has not been taken into account in previous light-curve modelling of stripped-envelope SNe, which may lead to a systematic underestimate of their ejecta masses. In addition to strong expansion, strong mixing of the radioactive material also seems to be required to fit the diffusion peak. It should be emphasized, however, that JEKYLL is limited to a geometry that is spherically symmetric on average, and large-scale asymmetries may also play a role. The relatively high initial mass found for the progenitor of SN 2020acat places it at the upper end of the mass distribution of type IIb SN progenitors, and a single-star origin cannot be excluded. Fil: Ergon, Mattias. Stockholms Universitet; Suecia Fil: Lundqvist, Peter. Stockholms Universitet; Suecia Fil: Fransson, Claes. Stockholms Universitet; Suecia Fil: Kuncarayakti, Hanindyo. University of Turku; Finlandia Fil: Das, Kaustav K.. California Institute of Technology; Estados Unidos Fil: De, Kishalay. Massachusetts Institute of Technology; Estados Unidos Fil: Ferrari, Lucía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; Argentina Fil: Fremling, Christoffer. California Institute of Technology; Estados Unidos Fil: Medler, Kyle. Liverpool John Moores University; Reino Unido Fil: Maeda, Keiichi. Kyoto University; Japón Fil: Pastorello, Andrea. Istituto Nazionale di Astrofisica; Italia Fil: Sollerman, Jesper. Stockholms Universitet; Suecia Fil: Stritzinger, Maximilian. University Aarhus; Dinamarca |
description |
We use the light-curve and spectral synthesis code JEKYLL to calculate a set of macroscopically mixed type IIb supernova (SN) models, which are compared to both previously published and new late-phase observations of SN 2020acat. The models differ in the initial mass, in the radial mixing and expansion of the radioactive material, and in the properties of the hydrogen envelope. The best match to the photospheric and nebular spectra and light curves of SN 2020acat is found for a model with an initial mass of 17 M⊙, strong radial mixing and expansion of the radioactive material, and a 0.1 M⊙ hydrogen envelope with a low hydrogen mass fraction of 0.27. The most interesting result is that strong expansion of the clumps containing radioactive material seems to be required to fit the observations of SN 2020acat both in the diffusion phase and in the nebular phase. These Ni bubbles are expected to expand due to heating from radioactive decays, but the degree of expansion is poorly constrained. Without strong expansion, there is a tension between the diffusion phase and the subsequent evolution, and models that fit the nebular phase produce a diffusion peak that is too broad. The diffusion-phase light curve is sensitive to the expansion of the Ni bubbles because the resulting Swiss-cheese-like geometry decreases the effective opacity and therefore the diffusion time. This effect has not been taken into account in previous light-curve modelling of stripped-envelope SNe, which may lead to a systematic underestimate of their ejecta masses. In addition to strong expansion, strong mixing of the radioactive material also seems to be required to fit the diffusion peak. It should be emphasized, however, that JEKYLL is limited to a geometry that is spherically symmetric on average, and large-scale asymmetries may also play a role. The relatively high initial mass found for the progenitor of SN 2020acat places it at the upper end of the mass distribution of type IIb SN progenitors, and a single-star origin cannot be excluded. |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024-03 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/256846 Ergon, Mattias; Lundqvist, Peter; Fransson, Claes; Kuncarayakti, Hanindyo; Das, Kaustav K.; et al.; Light curve and spectral modelling of the type IIb SN 2020acat: Evidence for a strong Ni bubble effect on the diffusion time; EDP Sciences; Astronomy and Astrophysics; 683; A241; 3-2024; 1-28 0004-6361 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/256846 |
identifier_str_mv |
Ergon, Mattias; Lundqvist, Peter; Fransson, Claes; Kuncarayakti, Hanindyo; Das, Kaustav K.; et al.; Light curve and spectral modelling of the type IIb SN 2020acat: Evidence for a strong Ni bubble effect on the diffusion time; EDP Sciences; Astronomy and Astrophysics; 683; A241; 3-2024; 1-28 0004-6361 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.aanda.org/10.1051/0004-6361/202346718 info:eu-repo/semantics/altIdentifier/doi/10.1051/0004-6361/202346718 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
EDP Sciences |
publisher.none.fl_str_mv |
EDP Sciences |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614188130893824 |
score |
13.070432 |