Light curve and spectral modelling of the type IIb SN 2020acat: Evidence for a strong Ni bubble effect on the diffusion time

Autores
Ergon, Mattias; Lundqvist, Peter; Fransson, Claes; Kuncarayakti, Hanindyo; Das, Kaustav K.; De, Kishalay; Ferrari, Lucía; Fremling, Christoffer; Medler, Kyle; Maeda, Keiichi; Pastorello, Andrea; Sollerman, Jesper; Stritzinger, Maximilian
Año de publicación
2024
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We use the light-curve and spectral synthesis code JEKYLL to calculate a set of macroscopically mixed type IIb supernova (SN) models, which are compared to both previously published and new late-phase observations of SN 2020acat. The models differ in the initial mass, in the radial mixing and expansion of the radioactive material, and in the properties of the hydrogen envelope. The best match to the photospheric and nebular spectra and light curves of SN 2020acat is found for a model with an initial mass of 17 M⊙, strong radial mixing and expansion of the radioactive material, and a 0.1 M⊙ hydrogen envelope with a low hydrogen mass fraction of 0.27. The most interesting result is that strong expansion of the clumps containing radioactive material seems to be required to fit the observations of SN 2020acat both in the diffusion phase and in the nebular phase. These Ni bubbles are expected to expand due to heating from radioactive decays, but the degree of expansion is poorly constrained. Without strong expansion, there is a tension between the diffusion phase and the subsequent evolution, and models that fit the nebular phase produce a diffusion peak that is too broad. The diffusion-phase light curve is sensitive to the expansion of the Ni bubbles because the resulting Swiss-cheese-like geometry decreases the effective opacity and therefore the diffusion time. This effect has not been taken into account in previous light-curve modelling of stripped-envelope SNe, which may lead to a systematic underestimate of their ejecta masses. In addition to strong expansion, strong mixing of the radioactive material also seems to be required to fit the diffusion peak. It should be emphasized, however, that JEKYLL is limited to a geometry that is spherically symmetric on average, and large-scale asymmetries may also play a role. The relatively high initial mass found for the progenitor of SN 2020acat places it at the upper end of the mass distribution of type IIb SN progenitors, and a single-star origin cannot be excluded.
Fil: Ergon, Mattias. Stockholms Universitet; Suecia
Fil: Lundqvist, Peter. Stockholms Universitet; Suecia
Fil: Fransson, Claes. Stockholms Universitet; Suecia
Fil: Kuncarayakti, Hanindyo. University of Turku; Finlandia
Fil: Das, Kaustav K.. California Institute of Technology; Estados Unidos
Fil: De, Kishalay. Massachusetts Institute of Technology; Estados Unidos
Fil: Ferrari, Lucía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; Argentina
Fil: Fremling, Christoffer. California Institute of Technology; Estados Unidos
Fil: Medler, Kyle. Liverpool John Moores University; Reino Unido
Fil: Maeda, Keiichi. Kyoto University; Japón
Fil: Pastorello, Andrea. Istituto Nazionale di Astrofisica; Italia
Fil: Sollerman, Jesper. Stockholms Universitet; Suecia
Fil: Stritzinger, Maximilian. University Aarhus; Dinamarca
Materia
Supernovae: individual: SN 2020acat
Supernovae: general
Radiative transfer
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/256846

id CONICETDig_b59a4448ce6c5cc9114f354547d46980
oai_identifier_str oai:ri.conicet.gov.ar:11336/256846
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Light curve and spectral modelling of the type IIb SN 2020acat: Evidence for a strong Ni bubble effect on the diffusion timeErgon, MattiasLundqvist, PeterFransson, ClaesKuncarayakti, HanindyoDas, Kaustav K.De, KishalayFerrari, LucíaFremling, ChristofferMedler, KyleMaeda, KeiichiPastorello, AndreaSollerman, JesperStritzinger, MaximilianSupernovae: individual: SN 2020acatSupernovae: generalRadiative transferhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We use the light-curve and spectral synthesis code JEKYLL to calculate a set of macroscopically mixed type IIb supernova (SN) models, which are compared to both previously published and new late-phase observations of SN 2020acat. The models differ in the initial mass, in the radial mixing and expansion of the radioactive material, and in the properties of the hydrogen envelope. The best match to the photospheric and nebular spectra and light curves of SN 2020acat is found for a model with an initial mass of 17 M⊙, strong radial mixing and expansion of the radioactive material, and a 0.1 M⊙ hydrogen envelope with a low hydrogen mass fraction of 0.27. The most interesting result is that strong expansion of the clumps containing radioactive material seems to be required to fit the observations of SN 2020acat both in the diffusion phase and in the nebular phase. These Ni bubbles are expected to expand due to heating from radioactive decays, but the degree of expansion is poorly constrained. Without strong expansion, there is a tension between the diffusion phase and the subsequent evolution, and models that fit the nebular phase produce a diffusion peak that is too broad. The diffusion-phase light curve is sensitive to the expansion of the Ni bubbles because the resulting Swiss-cheese-like geometry decreases the effective opacity and therefore the diffusion time. This effect has not been taken into account in previous light-curve modelling of stripped-envelope SNe, which may lead to a systematic underestimate of their ejecta masses. In addition to strong expansion, strong mixing of the radioactive material also seems to be required to fit the diffusion peak. It should be emphasized, however, that JEKYLL is limited to a geometry that is spherically symmetric on average, and large-scale asymmetries may also play a role. The relatively high initial mass found for the progenitor of SN 2020acat places it at the upper end of the mass distribution of type IIb SN progenitors, and a single-star origin cannot be excluded.Fil: Ergon, Mattias. Stockholms Universitet; SueciaFil: Lundqvist, Peter. Stockholms Universitet; SueciaFil: Fransson, Claes. Stockholms Universitet; SueciaFil: Kuncarayakti, Hanindyo. University of Turku; FinlandiaFil: Das, Kaustav K.. California Institute of Technology; Estados UnidosFil: De, Kishalay. Massachusetts Institute of Technology; Estados UnidosFil: Ferrari, Lucía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; ArgentinaFil: Fremling, Christoffer. California Institute of Technology; Estados UnidosFil: Medler, Kyle. Liverpool John Moores University; Reino UnidoFil: Maeda, Keiichi. Kyoto University; JapónFil: Pastorello, Andrea. Istituto Nazionale di Astrofisica; ItaliaFil: Sollerman, Jesper. Stockholms Universitet; SueciaFil: Stritzinger, Maximilian. University Aarhus; DinamarcaEDP Sciences2024-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/256846Ergon, Mattias; Lundqvist, Peter; Fransson, Claes; Kuncarayakti, Hanindyo; Das, Kaustav K.; et al.; Light curve and spectral modelling of the type IIb SN 2020acat: Evidence for a strong Ni bubble effect on the diffusion time; EDP Sciences; Astronomy and Astrophysics; 683; A241; 3-2024; 1-280004-6361CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.aanda.org/10.1051/0004-6361/202346718info:eu-repo/semantics/altIdentifier/doi/10.1051/0004-6361/202346718info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:20:35Zoai:ri.conicet.gov.ar:11336/256846instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:20:35.283CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Light curve and spectral modelling of the type IIb SN 2020acat: Evidence for a strong Ni bubble effect on the diffusion time
title Light curve and spectral modelling of the type IIb SN 2020acat: Evidence for a strong Ni bubble effect on the diffusion time
spellingShingle Light curve and spectral modelling of the type IIb SN 2020acat: Evidence for a strong Ni bubble effect on the diffusion time
Ergon, Mattias
Supernovae: individual: SN 2020acat
Supernovae: general
Radiative transfer
title_short Light curve and spectral modelling of the type IIb SN 2020acat: Evidence for a strong Ni bubble effect on the diffusion time
title_full Light curve and spectral modelling of the type IIb SN 2020acat: Evidence for a strong Ni bubble effect on the diffusion time
title_fullStr Light curve and spectral modelling of the type IIb SN 2020acat: Evidence for a strong Ni bubble effect on the diffusion time
title_full_unstemmed Light curve and spectral modelling of the type IIb SN 2020acat: Evidence for a strong Ni bubble effect on the diffusion time
title_sort Light curve and spectral modelling of the type IIb SN 2020acat: Evidence for a strong Ni bubble effect on the diffusion time
dc.creator.none.fl_str_mv Ergon, Mattias
Lundqvist, Peter
Fransson, Claes
Kuncarayakti, Hanindyo
Das, Kaustav K.
De, Kishalay
Ferrari, Lucía
Fremling, Christoffer
Medler, Kyle
Maeda, Keiichi
Pastorello, Andrea
Sollerman, Jesper
Stritzinger, Maximilian
author Ergon, Mattias
author_facet Ergon, Mattias
Lundqvist, Peter
Fransson, Claes
Kuncarayakti, Hanindyo
Das, Kaustav K.
De, Kishalay
Ferrari, Lucía
Fremling, Christoffer
Medler, Kyle
Maeda, Keiichi
Pastorello, Andrea
Sollerman, Jesper
Stritzinger, Maximilian
author_role author
author2 Lundqvist, Peter
Fransson, Claes
Kuncarayakti, Hanindyo
Das, Kaustav K.
De, Kishalay
Ferrari, Lucía
Fremling, Christoffer
Medler, Kyle
Maeda, Keiichi
Pastorello, Andrea
Sollerman, Jesper
Stritzinger, Maximilian
author2_role author
author
author
author
author
author
author
author
author
author
author
author
dc.subject.none.fl_str_mv Supernovae: individual: SN 2020acat
Supernovae: general
Radiative transfer
topic Supernovae: individual: SN 2020acat
Supernovae: general
Radiative transfer
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We use the light-curve and spectral synthesis code JEKYLL to calculate a set of macroscopically mixed type IIb supernova (SN) models, which are compared to both previously published and new late-phase observations of SN 2020acat. The models differ in the initial mass, in the radial mixing and expansion of the radioactive material, and in the properties of the hydrogen envelope. The best match to the photospheric and nebular spectra and light curves of SN 2020acat is found for a model with an initial mass of 17 M⊙, strong radial mixing and expansion of the radioactive material, and a 0.1 M⊙ hydrogen envelope with a low hydrogen mass fraction of 0.27. The most interesting result is that strong expansion of the clumps containing radioactive material seems to be required to fit the observations of SN 2020acat both in the diffusion phase and in the nebular phase. These Ni bubbles are expected to expand due to heating from radioactive decays, but the degree of expansion is poorly constrained. Without strong expansion, there is a tension between the diffusion phase and the subsequent evolution, and models that fit the nebular phase produce a diffusion peak that is too broad. The diffusion-phase light curve is sensitive to the expansion of the Ni bubbles because the resulting Swiss-cheese-like geometry decreases the effective opacity and therefore the diffusion time. This effect has not been taken into account in previous light-curve modelling of stripped-envelope SNe, which may lead to a systematic underestimate of their ejecta masses. In addition to strong expansion, strong mixing of the radioactive material also seems to be required to fit the diffusion peak. It should be emphasized, however, that JEKYLL is limited to a geometry that is spherically symmetric on average, and large-scale asymmetries may also play a role. The relatively high initial mass found for the progenitor of SN 2020acat places it at the upper end of the mass distribution of type IIb SN progenitors, and a single-star origin cannot be excluded.
Fil: Ergon, Mattias. Stockholms Universitet; Suecia
Fil: Lundqvist, Peter. Stockholms Universitet; Suecia
Fil: Fransson, Claes. Stockholms Universitet; Suecia
Fil: Kuncarayakti, Hanindyo. University of Turku; Finlandia
Fil: Das, Kaustav K.. California Institute of Technology; Estados Unidos
Fil: De, Kishalay. Massachusetts Institute of Technology; Estados Unidos
Fil: Ferrari, Lucía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; Argentina
Fil: Fremling, Christoffer. California Institute of Technology; Estados Unidos
Fil: Medler, Kyle. Liverpool John Moores University; Reino Unido
Fil: Maeda, Keiichi. Kyoto University; Japón
Fil: Pastorello, Andrea. Istituto Nazionale di Astrofisica; Italia
Fil: Sollerman, Jesper. Stockholms Universitet; Suecia
Fil: Stritzinger, Maximilian. University Aarhus; Dinamarca
description We use the light-curve and spectral synthesis code JEKYLL to calculate a set of macroscopically mixed type IIb supernova (SN) models, which are compared to both previously published and new late-phase observations of SN 2020acat. The models differ in the initial mass, in the radial mixing and expansion of the radioactive material, and in the properties of the hydrogen envelope. The best match to the photospheric and nebular spectra and light curves of SN 2020acat is found for a model with an initial mass of 17 M⊙, strong radial mixing and expansion of the radioactive material, and a 0.1 M⊙ hydrogen envelope with a low hydrogen mass fraction of 0.27. The most interesting result is that strong expansion of the clumps containing radioactive material seems to be required to fit the observations of SN 2020acat both in the diffusion phase and in the nebular phase. These Ni bubbles are expected to expand due to heating from radioactive decays, but the degree of expansion is poorly constrained. Without strong expansion, there is a tension between the diffusion phase and the subsequent evolution, and models that fit the nebular phase produce a diffusion peak that is too broad. The diffusion-phase light curve is sensitive to the expansion of the Ni bubbles because the resulting Swiss-cheese-like geometry decreases the effective opacity and therefore the diffusion time. This effect has not been taken into account in previous light-curve modelling of stripped-envelope SNe, which may lead to a systematic underestimate of their ejecta masses. In addition to strong expansion, strong mixing of the radioactive material also seems to be required to fit the diffusion peak. It should be emphasized, however, that JEKYLL is limited to a geometry that is spherically symmetric on average, and large-scale asymmetries may also play a role. The relatively high initial mass found for the progenitor of SN 2020acat places it at the upper end of the mass distribution of type IIb SN progenitors, and a single-star origin cannot be excluded.
publishDate 2024
dc.date.none.fl_str_mv 2024-03
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/256846
Ergon, Mattias; Lundqvist, Peter; Fransson, Claes; Kuncarayakti, Hanindyo; Das, Kaustav K.; et al.; Light curve and spectral modelling of the type IIb SN 2020acat: Evidence for a strong Ni bubble effect on the diffusion time; EDP Sciences; Astronomy and Astrophysics; 683; A241; 3-2024; 1-28
0004-6361
CONICET Digital
CONICET
url http://hdl.handle.net/11336/256846
identifier_str_mv Ergon, Mattias; Lundqvist, Peter; Fransson, Claes; Kuncarayakti, Hanindyo; Das, Kaustav K.; et al.; Light curve and spectral modelling of the type IIb SN 2020acat: Evidence for a strong Ni bubble effect on the diffusion time; EDP Sciences; Astronomy and Astrophysics; 683; A241; 3-2024; 1-28
0004-6361
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.aanda.org/10.1051/0004-6361/202346718
info:eu-repo/semantics/altIdentifier/doi/10.1051/0004-6361/202346718
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv EDP Sciences
publisher.none.fl_str_mv EDP Sciences
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614188130893824
score 13.070432