Creep dynamics of athermal amorphous materials: A mesoscopic approach
- Autores
- Liu, Chen; Ferrero, Ezequiel E.; Martens, Kirsten; Barrat, Jean Louis
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Yield stress fluids display complex dynamics, in particular when driveninto the transient regime between the solid and the flowing state. Inspired by creep experiments on dense amorphous materials, we implement mesoscale elasto-plastic descriptions to analyze such transient dynamics in athermal systems. Both our mean-field and space-dependent approaches consistently reproduce the typical experimental strain rate responses to different applied steps in stress. Moreover, they allow us to understand basic processes involved in the strain rate slowing down (creep) and the strain rate acceleration (fluidization) phases. The fluidization time increases in a power-law fashion as the applied external stress approaches a static yield stress. This stress value is related to the stress over-shoot in shear start-up experiments, and it is known to depend on sample preparation and age. By calculating correlations of the accumulated plasticity in the spatially resolved model, we reveal different modes of cooperative motion during the creep dynamics.
Fil: Liu, Chen. Université Grenoble Alpes; Francia. Université Paris Sud; Francia
Fil: Ferrero, Ezequiel E.. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Martens, Kirsten. Université Grenoble Alpes; Francia
Fil: Barrat, Jean Louis. Université Grenoble Alpes; Francia - Materia
-
CREEP
AMORPHOUS SOLIDS
ELASTOPLASTIC MODELS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/98092
Ver los metadatos del registro completo
id |
CONICETDig_b57d92641fbd71579faa5632b6c1de45 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/98092 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Creep dynamics of athermal amorphous materials: A mesoscopic approachLiu, ChenFerrero, Ezequiel E.Martens, KirstenBarrat, Jean LouisCREEPAMORPHOUS SOLIDSELASTOPLASTIC MODELShttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Yield stress fluids display complex dynamics, in particular when driveninto the transient regime between the solid and the flowing state. Inspired by creep experiments on dense amorphous materials, we implement mesoscale elasto-plastic descriptions to analyze such transient dynamics in athermal systems. Both our mean-field and space-dependent approaches consistently reproduce the typical experimental strain rate responses to different applied steps in stress. Moreover, they allow us to understand basic processes involved in the strain rate slowing down (creep) and the strain rate acceleration (fluidization) phases. The fluidization time increases in a power-law fashion as the applied external stress approaches a static yield stress. This stress value is related to the stress over-shoot in shear start-up experiments, and it is known to depend on sample preparation and age. By calculating correlations of the accumulated plasticity in the spatially resolved model, we reveal different modes of cooperative motion during the creep dynamics.Fil: Liu, Chen. Université Grenoble Alpes; Francia. Université Paris Sud; FranciaFil: Ferrero, Ezequiel E.. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Martens, Kirsten. Université Grenoble Alpes; FranciaFil: Barrat, Jean Louis. Université Grenoble Alpes; FranciaRoyal Society of Chemistry2018-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/98092Liu, Chen; Ferrero, Ezequiel E.; Martens, Kirsten; Barrat, Jean Louis; Creep dynamics of athermal amorphous materials: A mesoscopic approach; Royal Society of Chemistry; Soft Matter; 14; 41; 9-2018; 8306-83161744-683XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1039/C8SM01392Finfo:eu-repo/semantics/altIdentifier/url/https://pubs.rsc.org/en/content/articlelanding/2018/SM/C8SM01392Finfo:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1807.02497info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:55:31Zoai:ri.conicet.gov.ar:11336/98092instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:55:32.177CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Creep dynamics of athermal amorphous materials: A mesoscopic approach |
title |
Creep dynamics of athermal amorphous materials: A mesoscopic approach |
spellingShingle |
Creep dynamics of athermal amorphous materials: A mesoscopic approach Liu, Chen CREEP AMORPHOUS SOLIDS ELASTOPLASTIC MODELS |
title_short |
Creep dynamics of athermal amorphous materials: A mesoscopic approach |
title_full |
Creep dynamics of athermal amorphous materials: A mesoscopic approach |
title_fullStr |
Creep dynamics of athermal amorphous materials: A mesoscopic approach |
title_full_unstemmed |
Creep dynamics of athermal amorphous materials: A mesoscopic approach |
title_sort |
Creep dynamics of athermal amorphous materials: A mesoscopic approach |
dc.creator.none.fl_str_mv |
Liu, Chen Ferrero, Ezequiel E. Martens, Kirsten Barrat, Jean Louis |
author |
Liu, Chen |
author_facet |
Liu, Chen Ferrero, Ezequiel E. Martens, Kirsten Barrat, Jean Louis |
author_role |
author |
author2 |
Ferrero, Ezequiel E. Martens, Kirsten Barrat, Jean Louis |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
CREEP AMORPHOUS SOLIDS ELASTOPLASTIC MODELS |
topic |
CREEP AMORPHOUS SOLIDS ELASTOPLASTIC MODELS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Yield stress fluids display complex dynamics, in particular when driveninto the transient regime between the solid and the flowing state. Inspired by creep experiments on dense amorphous materials, we implement mesoscale elasto-plastic descriptions to analyze such transient dynamics in athermal systems. Both our mean-field and space-dependent approaches consistently reproduce the typical experimental strain rate responses to different applied steps in stress. Moreover, they allow us to understand basic processes involved in the strain rate slowing down (creep) and the strain rate acceleration (fluidization) phases. The fluidization time increases in a power-law fashion as the applied external stress approaches a static yield stress. This stress value is related to the stress over-shoot in shear start-up experiments, and it is known to depend on sample preparation and age. By calculating correlations of the accumulated plasticity in the spatially resolved model, we reveal different modes of cooperative motion during the creep dynamics. Fil: Liu, Chen. Université Grenoble Alpes; Francia. Université Paris Sud; Francia Fil: Ferrero, Ezequiel E.. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Martens, Kirsten. Université Grenoble Alpes; Francia Fil: Barrat, Jean Louis. Université Grenoble Alpes; Francia |
description |
Yield stress fluids display complex dynamics, in particular when driveninto the transient regime between the solid and the flowing state. Inspired by creep experiments on dense amorphous materials, we implement mesoscale elasto-plastic descriptions to analyze such transient dynamics in athermal systems. Both our mean-field and space-dependent approaches consistently reproduce the typical experimental strain rate responses to different applied steps in stress. Moreover, they allow us to understand basic processes involved in the strain rate slowing down (creep) and the strain rate acceleration (fluidization) phases. The fluidization time increases in a power-law fashion as the applied external stress approaches a static yield stress. This stress value is related to the stress over-shoot in shear start-up experiments, and it is known to depend on sample preparation and age. By calculating correlations of the accumulated plasticity in the spatially resolved model, we reveal different modes of cooperative motion during the creep dynamics. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-09 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/98092 Liu, Chen; Ferrero, Ezequiel E.; Martens, Kirsten; Barrat, Jean Louis; Creep dynamics of athermal amorphous materials: A mesoscopic approach; Royal Society of Chemistry; Soft Matter; 14; 41; 9-2018; 8306-8316 1744-683X CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/98092 |
identifier_str_mv |
Liu, Chen; Ferrero, Ezequiel E.; Martens, Kirsten; Barrat, Jean Louis; Creep dynamics of athermal amorphous materials: A mesoscopic approach; Royal Society of Chemistry; Soft Matter; 14; 41; 9-2018; 8306-8316 1744-683X CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1039/C8SM01392F info:eu-repo/semantics/altIdentifier/url/https://pubs.rsc.org/en/content/articlelanding/2018/SM/C8SM01392F info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1807.02497 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Royal Society of Chemistry |
publisher.none.fl_str_mv |
Royal Society of Chemistry |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269350019465216 |
score |
12.885934 |