New algorythm for the characterization of novel variants in the thyroglobulin gene: integration of in silico tools and expression essays
- Autores
- Gomes Pio, Mauricio; Molina, Maricel Fernanda; Adrover, Ezequiela; Rivolta, Carina Marcela; Targovnik, Hector Manuel
- Año de publicación
- 2022
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- Thyroglobulin (TG) is a homodimeric glycoprotein synthesized by the thyroid gland. To date, two hundred twenty-seven variations of the TG gene had been identified in humans. Thyroid dyshormonogenesis due to TG gene mutations have an estimated incidence of approximately 1 in 100,000 newborns. The clinical spectrum ranges from euthyroid to mild or severe hypothyroidism. Missense variants represent a large number of spontaneous variations that cause human disease. Such variants can behave with heterogeneous patterns of pathogenicity, depending of the amino acids and structures involved and the impact of the variant to create folding rearrangements. Therefore, the pathogenicity of missense mutations can be more challenging to predict. In the present work we show pathogenicity predictions of two novel variants in TG identified by our group, p.Pro2232Leu and p.Cys1282Tyr, where we combine the performance between pathogenicity prediction programs, protein modeling using ChimeraX and the gold standard protein expression system in order to accurate our knowledge in the interpretation of results using In Silico tools. The results show that of 20 programs, Pro2232Leu and p.Cys1282Tyr variants were defined as pathogenic by 17 and 15 programs respectively. QuimeraX analysis showed important structural changes as rupture of hydrogen’s bonds and the arisement of Clashes that could affect the correct folding for both variants. To corroborate the results identified In Silico, we proceeded to perform directed mutagenesis on recombinant plasmids (pcDNA6-TG) and transfection of the same into HEK93T cells. The Western Blot to compare the cell lysate and supernatant showed that both p.Pro2232Leu and p.Cys1282Tyr variants produced intracellular retention. Our results show that the combination of In Silicoprediction programs with protein modeling analysis improves and makes the identification and characterization of pathogenic variants more effective.
Fil: Gomes Pio, Mauricio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Inmunología, Genética y Metabolismo. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Inmunología, Genética y Metabolismo; Argentina
Fil: Molina, Maricel Fernanda. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Inmunología, Genética y Metabolismo. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Inmunología, Genética y Metabolismo; Argentina
Fil: Adrover, Ezequiela. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Inmunología, Genética y Metabolismo. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Inmunología, Genética y Metabolismo; Argentina
Fil: Rivolta, Carina Marcela. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Inmunología, Genética y Metabolismo. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Inmunología, Genética y Metabolismo; Argentina
Fil: Targovnik, Hector Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Inmunología, Genética y Metabolismo. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Inmunología, Genética y Metabolismo; Argentina
LXVII Reunión Anual de la Sociedad Argentina de Investigación Clínica; LXX Reunión Anual de la Sociedad Argentina de Inmunología & 3er Congreso Franco Argentino de Inmunología
Argentina
Sociedad Argentina de Investigación Clínica
Sociedad Argentina de Inmunología
Sociedad Argentina de Fisiología - Materia
-
Thyroglobulin
hypothyroidism
QuimeraX - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/247576
Ver los metadatos del registro completo
id |
CONICETDig_b4e3abeec95bf9343749acf7e609c928 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/247576 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
New algorythm for the characterization of novel variants in the thyroglobulin gene: integration of in silico tools and expression essaysGomes Pio, MauricioMolina, Maricel FernandaAdrover, EzequielaRivolta, Carina MarcelaTargovnik, Hector ManuelThyroglobulinhypothyroidismQuimeraXhttps://purl.org/becyt/ford/3.1https://purl.org/becyt/ford/3Thyroglobulin (TG) is a homodimeric glycoprotein synthesized by the thyroid gland. To date, two hundred twenty-seven variations of the TG gene had been identified in humans. Thyroid dyshormonogenesis due to TG gene mutations have an estimated incidence of approximately 1 in 100,000 newborns. The clinical spectrum ranges from euthyroid to mild or severe hypothyroidism. Missense variants represent a large number of spontaneous variations that cause human disease. Such variants can behave with heterogeneous patterns of pathogenicity, depending of the amino acids and structures involved and the impact of the variant to create folding rearrangements. Therefore, the pathogenicity of missense mutations can be more challenging to predict. In the present work we show pathogenicity predictions of two novel variants in TG identified by our group, p.Pro2232Leu and p.Cys1282Tyr, where we combine the performance between pathogenicity prediction programs, protein modeling using ChimeraX and the gold standard protein expression system in order to accurate our knowledge in the interpretation of results using In Silico tools. The results show that of 20 programs, Pro2232Leu and p.Cys1282Tyr variants were defined as pathogenic by 17 and 15 programs respectively. QuimeraX analysis showed important structural changes as rupture of hydrogen’s bonds and the arisement of Clashes that could affect the correct folding for both variants. To corroborate the results identified In Silico, we proceeded to perform directed mutagenesis on recombinant plasmids (pcDNA6-TG) and transfection of the same into HEK93T cells. The Western Blot to compare the cell lysate and supernatant showed that both p.Pro2232Leu and p.Cys1282Tyr variants produced intracellular retention. Our results show that the combination of In Silicoprediction programs with protein modeling analysis improves and makes the identification and characterization of pathogenic variants more effective.Fil: Gomes Pio, Mauricio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Inmunología, Genética y Metabolismo. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Inmunología, Genética y Metabolismo; ArgentinaFil: Molina, Maricel Fernanda. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Inmunología, Genética y Metabolismo. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Inmunología, Genética y Metabolismo; ArgentinaFil: Adrover, Ezequiela. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Inmunología, Genética y Metabolismo. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Inmunología, Genética y Metabolismo; ArgentinaFil: Rivolta, Carina Marcela. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Inmunología, Genética y Metabolismo. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Inmunología, Genética y Metabolismo; ArgentinaFil: Targovnik, Hector Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Inmunología, Genética y Metabolismo. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Inmunología, Genética y Metabolismo; ArgentinaLXVII Reunión Anual de la Sociedad Argentina de Investigación Clínica; LXX Reunión Anual de la Sociedad Argentina de Inmunología & 3er Congreso Franco Argentino de InmunologíaArgentinaSociedad Argentina de Investigación ClínicaSociedad Argentina de InmunologíaSociedad Argentina de FisiologíaFundación Revista Medicina2022info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObjectReuniónJournalhttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/247576New algorythm for the characterization of novel variants in the thyroglobulin gene: integration of in silico tools and expression essays; LXVII Reunión Anual de la Sociedad Argentina de Investigación Clínica; LXX Reunión Anual de la Sociedad Argentina de Inmunología & 3er Congreso Franco Argentino de Inmunología; Argentina; 2022; 1-61669-91061669-9106CONICET DigitalCONICETengInternacionalinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:00:18Zoai:ri.conicet.gov.ar:11336/247576instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:00:18.431CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
New algorythm for the characterization of novel variants in the thyroglobulin gene: integration of in silico tools and expression essays |
title |
New algorythm for the characterization of novel variants in the thyroglobulin gene: integration of in silico tools and expression essays |
spellingShingle |
New algorythm for the characterization of novel variants in the thyroglobulin gene: integration of in silico tools and expression essays Gomes Pio, Mauricio Thyroglobulin hypothyroidism QuimeraX |
title_short |
New algorythm for the characterization of novel variants in the thyroglobulin gene: integration of in silico tools and expression essays |
title_full |
New algorythm for the characterization of novel variants in the thyroglobulin gene: integration of in silico tools and expression essays |
title_fullStr |
New algorythm for the characterization of novel variants in the thyroglobulin gene: integration of in silico tools and expression essays |
title_full_unstemmed |
New algorythm for the characterization of novel variants in the thyroglobulin gene: integration of in silico tools and expression essays |
title_sort |
New algorythm for the characterization of novel variants in the thyroglobulin gene: integration of in silico tools and expression essays |
dc.creator.none.fl_str_mv |
Gomes Pio, Mauricio Molina, Maricel Fernanda Adrover, Ezequiela Rivolta, Carina Marcela Targovnik, Hector Manuel |
author |
Gomes Pio, Mauricio |
author_facet |
Gomes Pio, Mauricio Molina, Maricel Fernanda Adrover, Ezequiela Rivolta, Carina Marcela Targovnik, Hector Manuel |
author_role |
author |
author2 |
Molina, Maricel Fernanda Adrover, Ezequiela Rivolta, Carina Marcela Targovnik, Hector Manuel |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
Thyroglobulin hypothyroidism QuimeraX |
topic |
Thyroglobulin hypothyroidism QuimeraX |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/3.1 https://purl.org/becyt/ford/3 |
dc.description.none.fl_txt_mv |
Thyroglobulin (TG) is a homodimeric glycoprotein synthesized by the thyroid gland. To date, two hundred twenty-seven variations of the TG gene had been identified in humans. Thyroid dyshormonogenesis due to TG gene mutations have an estimated incidence of approximately 1 in 100,000 newborns. The clinical spectrum ranges from euthyroid to mild or severe hypothyroidism. Missense variants represent a large number of spontaneous variations that cause human disease. Such variants can behave with heterogeneous patterns of pathogenicity, depending of the amino acids and structures involved and the impact of the variant to create folding rearrangements. Therefore, the pathogenicity of missense mutations can be more challenging to predict. In the present work we show pathogenicity predictions of two novel variants in TG identified by our group, p.Pro2232Leu and p.Cys1282Tyr, where we combine the performance between pathogenicity prediction programs, protein modeling using ChimeraX and the gold standard protein expression system in order to accurate our knowledge in the interpretation of results using In Silico tools. The results show that of 20 programs, Pro2232Leu and p.Cys1282Tyr variants were defined as pathogenic by 17 and 15 programs respectively. QuimeraX analysis showed important structural changes as rupture of hydrogen’s bonds and the arisement of Clashes that could affect the correct folding for both variants. To corroborate the results identified In Silico, we proceeded to perform directed mutagenesis on recombinant plasmids (pcDNA6-TG) and transfection of the same into HEK93T cells. The Western Blot to compare the cell lysate and supernatant showed that both p.Pro2232Leu and p.Cys1282Tyr variants produced intracellular retention. Our results show that the combination of In Silicoprediction programs with protein modeling analysis improves and makes the identification and characterization of pathogenic variants more effective. Fil: Gomes Pio, Mauricio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Inmunología, Genética y Metabolismo. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Inmunología, Genética y Metabolismo; Argentina Fil: Molina, Maricel Fernanda. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Inmunología, Genética y Metabolismo. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Inmunología, Genética y Metabolismo; Argentina Fil: Adrover, Ezequiela. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Inmunología, Genética y Metabolismo. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Inmunología, Genética y Metabolismo; Argentina Fil: Rivolta, Carina Marcela. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Inmunología, Genética y Metabolismo. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Inmunología, Genética y Metabolismo; Argentina Fil: Targovnik, Hector Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Inmunología, Genética y Metabolismo. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Inmunología, Genética y Metabolismo; Argentina LXVII Reunión Anual de la Sociedad Argentina de Investigación Clínica; LXX Reunión Anual de la Sociedad Argentina de Inmunología & 3er Congreso Franco Argentino de Inmunología Argentina Sociedad Argentina de Investigación Clínica Sociedad Argentina de Inmunología Sociedad Argentina de Fisiología |
description |
Thyroglobulin (TG) is a homodimeric glycoprotein synthesized by the thyroid gland. To date, two hundred twenty-seven variations of the TG gene had been identified in humans. Thyroid dyshormonogenesis due to TG gene mutations have an estimated incidence of approximately 1 in 100,000 newborns. The clinical spectrum ranges from euthyroid to mild or severe hypothyroidism. Missense variants represent a large number of spontaneous variations that cause human disease. Such variants can behave with heterogeneous patterns of pathogenicity, depending of the amino acids and structures involved and the impact of the variant to create folding rearrangements. Therefore, the pathogenicity of missense mutations can be more challenging to predict. In the present work we show pathogenicity predictions of two novel variants in TG identified by our group, p.Pro2232Leu and p.Cys1282Tyr, where we combine the performance between pathogenicity prediction programs, protein modeling using ChimeraX and the gold standard protein expression system in order to accurate our knowledge in the interpretation of results using In Silico tools. The results show that of 20 programs, Pro2232Leu and p.Cys1282Tyr variants were defined as pathogenic by 17 and 15 programs respectively. QuimeraX analysis showed important structural changes as rupture of hydrogen’s bonds and the arisement of Clashes that could affect the correct folding for both variants. To corroborate the results identified In Silico, we proceeded to perform directed mutagenesis on recombinant plasmids (pcDNA6-TG) and transfection of the same into HEK93T cells. The Western Blot to compare the cell lysate and supernatant showed that both p.Pro2232Leu and p.Cys1282Tyr variants produced intracellular retention. Our results show that the combination of In Silicoprediction programs with protein modeling analysis improves and makes the identification and characterization of pathogenic variants more effective. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion info:eu-repo/semantics/conferenceObject Reunión Journal http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
status_str |
publishedVersion |
format |
conferenceObject |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/247576 New algorythm for the characterization of novel variants in the thyroglobulin gene: integration of in silico tools and expression essays; LXVII Reunión Anual de la Sociedad Argentina de Investigación Clínica; LXX Reunión Anual de la Sociedad Argentina de Inmunología & 3er Congreso Franco Argentino de Inmunología; Argentina; 2022; 1-6 1669-9106 1669-9106 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/247576 |
identifier_str_mv |
New algorythm for the characterization of novel variants in the thyroglobulin gene: integration of in silico tools and expression essays; LXVII Reunión Anual de la Sociedad Argentina de Investigación Clínica; LXX Reunión Anual de la Sociedad Argentina de Inmunología & 3er Congreso Franco Argentino de Inmunología; Argentina; 2022; 1-6 1669-9106 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.coverage.none.fl_str_mv |
Internacional |
dc.publisher.none.fl_str_mv |
Fundación Revista Medicina |
publisher.none.fl_str_mv |
Fundación Revista Medicina |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269630970724352 |
score |
13.13397 |