New algorythm for the characterization of novel variants in the thyroglobulin gene: integration of in silico tools and expression essays

Autores
Gomes Pio, Mauricio; Molina, Maricel Fernanda; Adrover, Ezequiela; Rivolta, Carina Marcela; Targovnik, Hector Manuel
Año de publicación
2022
Idioma
inglés
Tipo de recurso
documento de conferencia
Estado
versión publicada
Descripción
Thyroglobulin (TG) is a homodimeric glycoprotein synthesized by the thyroid gland. To date, two hundred twenty-seven variations of the TG gene had been identified in humans. Thyroid dyshormonogenesis due to TG gene mutations have an estimated incidence of approximately 1 in 100,000 newborns. The clinical spectrum ranges from euthyroid to mild or severe hypothyroidism. Missense variants represent a large number of spontaneous variations that cause human disease. Such variants can behave with heterogeneous patterns of pathogenicity, depending of the amino acids and structures involved and the impact of the variant to create folding rearrangements. Therefore, the pathogenicity of missense mutations can be more challenging to predict. In the present work we show pathogenicity predictions of two novel variants in TG identified by our group, p.Pro2232Leu and p.Cys1282Tyr, where we combine the performance between pathogenicity prediction programs, protein modeling using ChimeraX and the gold standard protein expression system in order to accurate our knowledge in the interpretation of results using In Silico tools. The results show that of 20 programs, Pro2232Leu and p.Cys1282Tyr variants were defined as pathogenic by 17 and 15 programs respectively. QuimeraX analysis showed important structural changes as rupture of hydrogen’s bonds and the arisement of Clashes that could affect the correct folding for both variants. To corroborate the results identified In Silico, we proceeded to perform directed mutagenesis on recombinant plasmids (pcDNA6-TG) and transfection of the same into HEK93T cells. The Western Blot to compare the cell lysate and supernatant showed that both p.Pro2232Leu and p.Cys1282Tyr variants produced intracellular retention. Our results show that the combination of In Silicoprediction programs with protein modeling analysis improves and makes the identification and characterization of pathogenic variants more effective.
Fil: Gomes Pio, Mauricio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Inmunología, Genética y Metabolismo. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Inmunología, Genética y Metabolismo; Argentina
Fil: Molina, Maricel Fernanda. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Inmunología, Genética y Metabolismo. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Inmunología, Genética y Metabolismo; Argentina
Fil: Adrover, Ezequiela. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Inmunología, Genética y Metabolismo. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Inmunología, Genética y Metabolismo; Argentina
Fil: Rivolta, Carina Marcela. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Inmunología, Genética y Metabolismo. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Inmunología, Genética y Metabolismo; Argentina
Fil: Targovnik, Hector Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Inmunología, Genética y Metabolismo. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Inmunología, Genética y Metabolismo; Argentina
LXVII Reunión Anual de la Sociedad Argentina de Investigación Clínica; LXX Reunión Anual de la Sociedad Argentina de Inmunología & 3er Congreso Franco Argentino de Inmunología
Argentina
Sociedad Argentina de Investigación Clínica
Sociedad Argentina de Inmunología
Sociedad Argentina de Fisiología
Materia
Thyroglobulin
hypothyroidism
QuimeraX
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/247576

id CONICETDig_b4e3abeec95bf9343749acf7e609c928
oai_identifier_str oai:ri.conicet.gov.ar:11336/247576
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling New algorythm for the characterization of novel variants in the thyroglobulin gene: integration of in silico tools and expression essaysGomes Pio, MauricioMolina, Maricel FernandaAdrover, EzequielaRivolta, Carina MarcelaTargovnik, Hector ManuelThyroglobulinhypothyroidismQuimeraXhttps://purl.org/becyt/ford/3.1https://purl.org/becyt/ford/3Thyroglobulin (TG) is a homodimeric glycoprotein synthesized by the thyroid gland. To date, two hundred twenty-seven variations of the TG gene had been identified in humans. Thyroid dyshormonogenesis due to TG gene mutations have an estimated incidence of approximately 1 in 100,000 newborns. The clinical spectrum ranges from euthyroid to mild or severe hypothyroidism. Missense variants represent a large number of spontaneous variations that cause human disease. Such variants can behave with heterogeneous patterns of pathogenicity, depending of the amino acids and structures involved and the impact of the variant to create folding rearrangements. Therefore, the pathogenicity of missense mutations can be more challenging to predict. In the present work we show pathogenicity predictions of two novel variants in TG identified by our group, p.Pro2232Leu and p.Cys1282Tyr, where we combine the performance between pathogenicity prediction programs, protein modeling using ChimeraX and the gold standard protein expression system in order to accurate our knowledge in the interpretation of results using In Silico tools. The results show that of 20 programs, Pro2232Leu and p.Cys1282Tyr variants were defined as pathogenic by 17 and 15 programs respectively. QuimeraX analysis showed important structural changes as rupture of hydrogen’s bonds and the arisement of Clashes that could affect the correct folding for both variants. To corroborate the results identified In Silico, we proceeded to perform directed mutagenesis on recombinant plasmids (pcDNA6-TG) and transfection of the same into HEK93T cells. The Western Blot to compare the cell lysate and supernatant showed that both p.Pro2232Leu and p.Cys1282Tyr variants produced intracellular retention. Our results show that the combination of In Silicoprediction programs with protein modeling analysis improves and makes the identification and characterization of pathogenic variants more effective.Fil: Gomes Pio, Mauricio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Inmunología, Genética y Metabolismo. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Inmunología, Genética y Metabolismo; ArgentinaFil: Molina, Maricel Fernanda. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Inmunología, Genética y Metabolismo. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Inmunología, Genética y Metabolismo; ArgentinaFil: Adrover, Ezequiela. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Inmunología, Genética y Metabolismo. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Inmunología, Genética y Metabolismo; ArgentinaFil: Rivolta, Carina Marcela. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Inmunología, Genética y Metabolismo. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Inmunología, Genética y Metabolismo; ArgentinaFil: Targovnik, Hector Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Inmunología, Genética y Metabolismo. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Inmunología, Genética y Metabolismo; ArgentinaLXVII Reunión Anual de la Sociedad Argentina de Investigación Clínica; LXX Reunión Anual de la Sociedad Argentina de Inmunología & 3er Congreso Franco Argentino de InmunologíaArgentinaSociedad Argentina de Investigación ClínicaSociedad Argentina de InmunologíaSociedad Argentina de FisiologíaFundación Revista Medicina2022info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObjectReuniónJournalhttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/247576New algorythm for the characterization of novel variants in the thyroglobulin gene: integration of in silico tools and expression essays; LXVII Reunión Anual de la Sociedad Argentina de Investigación Clínica; LXX Reunión Anual de la Sociedad Argentina de Inmunología & 3er Congreso Franco Argentino de Inmunología; Argentina; 2022; 1-61669-91061669-9106CONICET DigitalCONICETengInternacionalinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:00:18Zoai:ri.conicet.gov.ar:11336/247576instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:00:18.431CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv New algorythm for the characterization of novel variants in the thyroglobulin gene: integration of in silico tools and expression essays
title New algorythm for the characterization of novel variants in the thyroglobulin gene: integration of in silico tools and expression essays
spellingShingle New algorythm for the characterization of novel variants in the thyroglobulin gene: integration of in silico tools and expression essays
Gomes Pio, Mauricio
Thyroglobulin
hypothyroidism
QuimeraX
title_short New algorythm for the characterization of novel variants in the thyroglobulin gene: integration of in silico tools and expression essays
title_full New algorythm for the characterization of novel variants in the thyroglobulin gene: integration of in silico tools and expression essays
title_fullStr New algorythm for the characterization of novel variants in the thyroglobulin gene: integration of in silico tools and expression essays
title_full_unstemmed New algorythm for the characterization of novel variants in the thyroglobulin gene: integration of in silico tools and expression essays
title_sort New algorythm for the characterization of novel variants in the thyroglobulin gene: integration of in silico tools and expression essays
dc.creator.none.fl_str_mv Gomes Pio, Mauricio
Molina, Maricel Fernanda
Adrover, Ezequiela
Rivolta, Carina Marcela
Targovnik, Hector Manuel
author Gomes Pio, Mauricio
author_facet Gomes Pio, Mauricio
Molina, Maricel Fernanda
Adrover, Ezequiela
Rivolta, Carina Marcela
Targovnik, Hector Manuel
author_role author
author2 Molina, Maricel Fernanda
Adrover, Ezequiela
Rivolta, Carina Marcela
Targovnik, Hector Manuel
author2_role author
author
author
author
dc.subject.none.fl_str_mv Thyroglobulin
hypothyroidism
QuimeraX
topic Thyroglobulin
hypothyroidism
QuimeraX
purl_subject.fl_str_mv https://purl.org/becyt/ford/3.1
https://purl.org/becyt/ford/3
dc.description.none.fl_txt_mv Thyroglobulin (TG) is a homodimeric glycoprotein synthesized by the thyroid gland. To date, two hundred twenty-seven variations of the TG gene had been identified in humans. Thyroid dyshormonogenesis due to TG gene mutations have an estimated incidence of approximately 1 in 100,000 newborns. The clinical spectrum ranges from euthyroid to mild or severe hypothyroidism. Missense variants represent a large number of spontaneous variations that cause human disease. Such variants can behave with heterogeneous patterns of pathogenicity, depending of the amino acids and structures involved and the impact of the variant to create folding rearrangements. Therefore, the pathogenicity of missense mutations can be more challenging to predict. In the present work we show pathogenicity predictions of two novel variants in TG identified by our group, p.Pro2232Leu and p.Cys1282Tyr, where we combine the performance between pathogenicity prediction programs, protein modeling using ChimeraX and the gold standard protein expression system in order to accurate our knowledge in the interpretation of results using In Silico tools. The results show that of 20 programs, Pro2232Leu and p.Cys1282Tyr variants were defined as pathogenic by 17 and 15 programs respectively. QuimeraX analysis showed important structural changes as rupture of hydrogen’s bonds and the arisement of Clashes that could affect the correct folding for both variants. To corroborate the results identified In Silico, we proceeded to perform directed mutagenesis on recombinant plasmids (pcDNA6-TG) and transfection of the same into HEK93T cells. The Western Blot to compare the cell lysate and supernatant showed that both p.Pro2232Leu and p.Cys1282Tyr variants produced intracellular retention. Our results show that the combination of In Silicoprediction programs with protein modeling analysis improves and makes the identification and characterization of pathogenic variants more effective.
Fil: Gomes Pio, Mauricio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Inmunología, Genética y Metabolismo. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Inmunología, Genética y Metabolismo; Argentina
Fil: Molina, Maricel Fernanda. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Inmunología, Genética y Metabolismo. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Inmunología, Genética y Metabolismo; Argentina
Fil: Adrover, Ezequiela. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Inmunología, Genética y Metabolismo. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Inmunología, Genética y Metabolismo; Argentina
Fil: Rivolta, Carina Marcela. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Inmunología, Genética y Metabolismo. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Inmunología, Genética y Metabolismo; Argentina
Fil: Targovnik, Hector Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Inmunología, Genética y Metabolismo. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Inmunología, Genética y Metabolismo; Argentina
LXVII Reunión Anual de la Sociedad Argentina de Investigación Clínica; LXX Reunión Anual de la Sociedad Argentina de Inmunología & 3er Congreso Franco Argentino de Inmunología
Argentina
Sociedad Argentina de Investigación Clínica
Sociedad Argentina de Inmunología
Sociedad Argentina de Fisiología
description Thyroglobulin (TG) is a homodimeric glycoprotein synthesized by the thyroid gland. To date, two hundred twenty-seven variations of the TG gene had been identified in humans. Thyroid dyshormonogenesis due to TG gene mutations have an estimated incidence of approximately 1 in 100,000 newborns. The clinical spectrum ranges from euthyroid to mild or severe hypothyroidism. Missense variants represent a large number of spontaneous variations that cause human disease. Such variants can behave with heterogeneous patterns of pathogenicity, depending of the amino acids and structures involved and the impact of the variant to create folding rearrangements. Therefore, the pathogenicity of missense mutations can be more challenging to predict. In the present work we show pathogenicity predictions of two novel variants in TG identified by our group, p.Pro2232Leu and p.Cys1282Tyr, where we combine the performance between pathogenicity prediction programs, protein modeling using ChimeraX and the gold standard protein expression system in order to accurate our knowledge in the interpretation of results using In Silico tools. The results show that of 20 programs, Pro2232Leu and p.Cys1282Tyr variants were defined as pathogenic by 17 and 15 programs respectively. QuimeraX analysis showed important structural changes as rupture of hydrogen’s bonds and the arisement of Clashes that could affect the correct folding for both variants. To corroborate the results identified In Silico, we proceeded to perform directed mutagenesis on recombinant plasmids (pcDNA6-TG) and transfection of the same into HEK93T cells. The Western Blot to compare the cell lysate and supernatant showed that both p.Pro2232Leu and p.Cys1282Tyr variants produced intracellular retention. Our results show that the combination of In Silicoprediction programs with protein modeling analysis improves and makes the identification and characterization of pathogenic variants more effective.
publishDate 2022
dc.date.none.fl_str_mv 2022
dc.type.none.fl_str_mv info:eu-repo/semantics/publishedVersion
info:eu-repo/semantics/conferenceObject
Reunión
Journal
http://purl.org/coar/resource_type/c_5794
info:ar-repo/semantics/documentoDeConferencia
status_str publishedVersion
format conferenceObject
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/247576
New algorythm for the characterization of novel variants in the thyroglobulin gene: integration of in silico tools and expression essays; LXVII Reunión Anual de la Sociedad Argentina de Investigación Clínica; LXX Reunión Anual de la Sociedad Argentina de Inmunología & 3er Congreso Franco Argentino de Inmunología; Argentina; 2022; 1-6
1669-9106
1669-9106
CONICET Digital
CONICET
url http://hdl.handle.net/11336/247576
identifier_str_mv New algorythm for the characterization of novel variants in the thyroglobulin gene: integration of in silico tools and expression essays; LXVII Reunión Anual de la Sociedad Argentina de Investigación Clínica; LXX Reunión Anual de la Sociedad Argentina de Inmunología & 3er Congreso Franco Argentino de Inmunología; Argentina; 2022; 1-6
1669-9106
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.coverage.none.fl_str_mv Internacional
dc.publisher.none.fl_str_mv Fundación Revista Medicina
publisher.none.fl_str_mv Fundación Revista Medicina
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269630970724352
score 13.13397