Fresh Molecular Look at Calcite-Brine Nanoconfined Interfaces
- Autores
- Kirch, Alexsandro; Mutisya, Sylvia Mueni; Sanchez, Veronica Muriel; de Almeida, James Moraes; Miranda, Caetano Rodrigues
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Calcite-fluid interface plays a central role in geochemical, synthetic, and biological crystal growth. The ionic nature of the calcite surface can modify the fluid-solid interaction and the fluid properties under spatial confinement and can also influence the adsorption of chemical species. We investigate the structure of the solvent and ions (Na, Cl, and Ca) at the calcite-aqueous solution interface under confinement and how such environment modifies the properties of water. To properly investigate the system, molecular dynamics simulations were employed to analyze the hydrogen bond network and to calculate NMR relaxation times. Here, we provide a new insight with additional atomistically detailed analysis by relating the topology of the hydrogen bond network with the dynamical properties in nanoconfinement interfaces. We have shown that the strong geometrical constraints and the presence of ions do influence the hydrogen bond network, resulting in more extended geodesic paths. Hydrogen bond branches connect low to high dynamics molecules across the pore and hence may explain the gluelike mechanical properties observed in the confinement environment. Moreover, we showed that the surface water observed at the calcite interface is characterized by slow transversal spin relaxation time (T2) and highly coordinated water molecules. The physical and electrostatic barrier emerged from the epitaxial ordering of water results in a particular ionic distribution, which can prevent the direct adsorption of a variety of chemical species. The implications of our results delineate important contributions to the current understanding of crystallization and biomineralization processes.
Fil: Kirch, Alexsandro. Universidade de Sao Paulo; Brasil
Fil: Mutisya, Sylvia Mueni. Universidade Federal Do Abc; Brasil
Fil: Sanchez, Veronica Muriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Simulación Computacional para Aplicaciones Tecnológicas; Argentina. Universidad Nacional de San Martín. Escuela de Ciencia y Tecnología; Argentina
Fil: de Almeida, James Moraes. Universidade de Sao Paulo; Brasil
Fil: Miranda, Caetano Rodrigues. Universidade de Sao Paulo; Brasil - Materia
-
calcite
NMR
fluid
molecular dynamics - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/88523
Ver los metadatos del registro completo
id |
CONICETDig_b4c44b88c8b71a541912bc66554a64f4 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/88523 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Fresh Molecular Look at Calcite-Brine Nanoconfined InterfacesKirch, AlexsandroMutisya, Sylvia MueniSanchez, Veronica Murielde Almeida, James MoraesMiranda, Caetano RodriguescalciteNMRfluidmolecular dynamicshttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1Calcite-fluid interface plays a central role in geochemical, synthetic, and biological crystal growth. The ionic nature of the calcite surface can modify the fluid-solid interaction and the fluid properties under spatial confinement and can also influence the adsorption of chemical species. We investigate the structure of the solvent and ions (Na, Cl, and Ca) at the calcite-aqueous solution interface under confinement and how such environment modifies the properties of water. To properly investigate the system, molecular dynamics simulations were employed to analyze the hydrogen bond network and to calculate NMR relaxation times. Here, we provide a new insight with additional atomistically detailed analysis by relating the topology of the hydrogen bond network with the dynamical properties in nanoconfinement interfaces. We have shown that the strong geometrical constraints and the presence of ions do influence the hydrogen bond network, resulting in more extended geodesic paths. Hydrogen bond branches connect low to high dynamics molecules across the pore and hence may explain the gluelike mechanical properties observed in the confinement environment. Moreover, we showed that the surface water observed at the calcite interface is characterized by slow transversal spin relaxation time (T2) and highly coordinated water molecules. The physical and electrostatic barrier emerged from the epitaxial ordering of water results in a particular ionic distribution, which can prevent the direct adsorption of a variety of chemical species. The implications of our results delineate important contributions to the current understanding of crystallization and biomineralization processes.Fil: Kirch, Alexsandro. Universidade de Sao Paulo; BrasilFil: Mutisya, Sylvia Mueni. Universidade Federal Do Abc; BrasilFil: Sanchez, Veronica Muriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Simulación Computacional para Aplicaciones Tecnológicas; Argentina. Universidad Nacional de San Martín. Escuela de Ciencia y Tecnología; ArgentinaFil: de Almeida, James Moraes. Universidade de Sao Paulo; BrasilFil: Miranda, Caetano Rodrigues. Universidade de Sao Paulo; BrasilAmerican Chemical Society2018-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/88523Kirch, Alexsandro; Mutisya, Sylvia Mueni; Sanchez, Veronica Muriel; de Almeida, James Moraes; Miranda, Caetano Rodrigues; Fresh Molecular Look at Calcite-Brine Nanoconfined Interfaces; American Chemical Society; Journal of Physical Chemistry C; 122; 11; 3-2018; 6117-61271932-7447CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://pubs.acs.org/doi/10.1021/acs.jpcc.7b12582info:eu-repo/semantics/altIdentifier/doi/10.1021/acs.jpcc.7b12582info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:30:30Zoai:ri.conicet.gov.ar:11336/88523instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:30:30.481CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Fresh Molecular Look at Calcite-Brine Nanoconfined Interfaces |
title |
Fresh Molecular Look at Calcite-Brine Nanoconfined Interfaces |
spellingShingle |
Fresh Molecular Look at Calcite-Brine Nanoconfined Interfaces Kirch, Alexsandro calcite NMR fluid molecular dynamics |
title_short |
Fresh Molecular Look at Calcite-Brine Nanoconfined Interfaces |
title_full |
Fresh Molecular Look at Calcite-Brine Nanoconfined Interfaces |
title_fullStr |
Fresh Molecular Look at Calcite-Brine Nanoconfined Interfaces |
title_full_unstemmed |
Fresh Molecular Look at Calcite-Brine Nanoconfined Interfaces |
title_sort |
Fresh Molecular Look at Calcite-Brine Nanoconfined Interfaces |
dc.creator.none.fl_str_mv |
Kirch, Alexsandro Mutisya, Sylvia Mueni Sanchez, Veronica Muriel de Almeida, James Moraes Miranda, Caetano Rodrigues |
author |
Kirch, Alexsandro |
author_facet |
Kirch, Alexsandro Mutisya, Sylvia Mueni Sanchez, Veronica Muriel de Almeida, James Moraes Miranda, Caetano Rodrigues |
author_role |
author |
author2 |
Mutisya, Sylvia Mueni Sanchez, Veronica Muriel de Almeida, James Moraes Miranda, Caetano Rodrigues |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
calcite NMR fluid molecular dynamics |
topic |
calcite NMR fluid molecular dynamics |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.4 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Calcite-fluid interface plays a central role in geochemical, synthetic, and biological crystal growth. The ionic nature of the calcite surface can modify the fluid-solid interaction and the fluid properties under spatial confinement and can also influence the adsorption of chemical species. We investigate the structure of the solvent and ions (Na, Cl, and Ca) at the calcite-aqueous solution interface under confinement and how such environment modifies the properties of water. To properly investigate the system, molecular dynamics simulations were employed to analyze the hydrogen bond network and to calculate NMR relaxation times. Here, we provide a new insight with additional atomistically detailed analysis by relating the topology of the hydrogen bond network with the dynamical properties in nanoconfinement interfaces. We have shown that the strong geometrical constraints and the presence of ions do influence the hydrogen bond network, resulting in more extended geodesic paths. Hydrogen bond branches connect low to high dynamics molecules across the pore and hence may explain the gluelike mechanical properties observed in the confinement environment. Moreover, we showed that the surface water observed at the calcite interface is characterized by slow transversal spin relaxation time (T2) and highly coordinated water molecules. The physical and electrostatic barrier emerged from the epitaxial ordering of water results in a particular ionic distribution, which can prevent the direct adsorption of a variety of chemical species. The implications of our results delineate important contributions to the current understanding of crystallization and biomineralization processes. Fil: Kirch, Alexsandro. Universidade de Sao Paulo; Brasil Fil: Mutisya, Sylvia Mueni. Universidade Federal Do Abc; Brasil Fil: Sanchez, Veronica Muriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Simulación Computacional para Aplicaciones Tecnológicas; Argentina. Universidad Nacional de San Martín. Escuela de Ciencia y Tecnología; Argentina Fil: de Almeida, James Moraes. Universidade de Sao Paulo; Brasil Fil: Miranda, Caetano Rodrigues. Universidade de Sao Paulo; Brasil |
description |
Calcite-fluid interface plays a central role in geochemical, synthetic, and biological crystal growth. The ionic nature of the calcite surface can modify the fluid-solid interaction and the fluid properties under spatial confinement and can also influence the adsorption of chemical species. We investigate the structure of the solvent and ions (Na, Cl, and Ca) at the calcite-aqueous solution interface under confinement and how such environment modifies the properties of water. To properly investigate the system, molecular dynamics simulations were employed to analyze the hydrogen bond network and to calculate NMR relaxation times. Here, we provide a new insight with additional atomistically detailed analysis by relating the topology of the hydrogen bond network with the dynamical properties in nanoconfinement interfaces. We have shown that the strong geometrical constraints and the presence of ions do influence the hydrogen bond network, resulting in more extended geodesic paths. Hydrogen bond branches connect low to high dynamics molecules across the pore and hence may explain the gluelike mechanical properties observed in the confinement environment. Moreover, we showed that the surface water observed at the calcite interface is characterized by slow transversal spin relaxation time (T2) and highly coordinated water molecules. The physical and electrostatic barrier emerged from the epitaxial ordering of water results in a particular ionic distribution, which can prevent the direct adsorption of a variety of chemical species. The implications of our results delineate important contributions to the current understanding of crystallization and biomineralization processes. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-03 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/88523 Kirch, Alexsandro; Mutisya, Sylvia Mueni; Sanchez, Veronica Muriel; de Almeida, James Moraes; Miranda, Caetano Rodrigues; Fresh Molecular Look at Calcite-Brine Nanoconfined Interfaces; American Chemical Society; Journal of Physical Chemistry C; 122; 11; 3-2018; 6117-6127 1932-7447 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/88523 |
identifier_str_mv |
Kirch, Alexsandro; Mutisya, Sylvia Mueni; Sanchez, Veronica Muriel; de Almeida, James Moraes; Miranda, Caetano Rodrigues; Fresh Molecular Look at Calcite-Brine Nanoconfined Interfaces; American Chemical Society; Journal of Physical Chemistry C; 122; 11; 3-2018; 6117-6127 1932-7447 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://pubs.acs.org/doi/10.1021/acs.jpcc.7b12582 info:eu-repo/semantics/altIdentifier/doi/10.1021/acs.jpcc.7b12582 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Chemical Society |
publisher.none.fl_str_mv |
American Chemical Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614313306750976 |
score |
13.070432 |