Fresh Molecular Look at Calcite-Brine Nanoconfined Interfaces

Autores
Kirch, Alexsandro; Mutisya, Sylvia Mueni; Sanchez, Veronica Muriel; de Almeida, James Moraes; Miranda, Caetano Rodrigues
Año de publicación
2018
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Calcite-fluid interface plays a central role in geochemical, synthetic, and biological crystal growth. The ionic nature of the calcite surface can modify the fluid-solid interaction and the fluid properties under spatial confinement and can also influence the adsorption of chemical species. We investigate the structure of the solvent and ions (Na, Cl, and Ca) at the calcite-aqueous solution interface under confinement and how such environment modifies the properties of water. To properly investigate the system, molecular dynamics simulations were employed to analyze the hydrogen bond network and to calculate NMR relaxation times. Here, we provide a new insight with additional atomistically detailed analysis by relating the topology of the hydrogen bond network with the dynamical properties in nanoconfinement interfaces. We have shown that the strong geometrical constraints and the presence of ions do influence the hydrogen bond network, resulting in more extended geodesic paths. Hydrogen bond branches connect low to high dynamics molecules across the pore and hence may explain the gluelike mechanical properties observed in the confinement environment. Moreover, we showed that the surface water observed at the calcite interface is characterized by slow transversal spin relaxation time (T2) and highly coordinated water molecules. The physical and electrostatic barrier emerged from the epitaxial ordering of water results in a particular ionic distribution, which can prevent the direct adsorption of a variety of chemical species. The implications of our results delineate important contributions to the current understanding of crystallization and biomineralization processes.
Fil: Kirch, Alexsandro. Universidade de Sao Paulo; Brasil
Fil: Mutisya, Sylvia Mueni. Universidade Federal Do Abc; Brasil
Fil: Sanchez, Veronica Muriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Simulación Computacional para Aplicaciones Tecnológicas; Argentina. Universidad Nacional de San Martín. Escuela de Ciencia y Tecnología; Argentina
Fil: de Almeida, James Moraes. Universidade de Sao Paulo; Brasil
Fil: Miranda, Caetano Rodrigues. Universidade de Sao Paulo; Brasil
Materia
calcite
NMR
fluid
molecular dynamics
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/88523

id CONICETDig_b4c44b88c8b71a541912bc66554a64f4
oai_identifier_str oai:ri.conicet.gov.ar:11336/88523
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Fresh Molecular Look at Calcite-Brine Nanoconfined InterfacesKirch, AlexsandroMutisya, Sylvia MueniSanchez, Veronica Murielde Almeida, James MoraesMiranda, Caetano RodriguescalciteNMRfluidmolecular dynamicshttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1Calcite-fluid interface plays a central role in geochemical, synthetic, and biological crystal growth. The ionic nature of the calcite surface can modify the fluid-solid interaction and the fluid properties under spatial confinement and can also influence the adsorption of chemical species. We investigate the structure of the solvent and ions (Na, Cl, and Ca) at the calcite-aqueous solution interface under confinement and how such environment modifies the properties of water. To properly investigate the system, molecular dynamics simulations were employed to analyze the hydrogen bond network and to calculate NMR relaxation times. Here, we provide a new insight with additional atomistically detailed analysis by relating the topology of the hydrogen bond network with the dynamical properties in nanoconfinement interfaces. We have shown that the strong geometrical constraints and the presence of ions do influence the hydrogen bond network, resulting in more extended geodesic paths. Hydrogen bond branches connect low to high dynamics molecules across the pore and hence may explain the gluelike mechanical properties observed in the confinement environment. Moreover, we showed that the surface water observed at the calcite interface is characterized by slow transversal spin relaxation time (T2) and highly coordinated water molecules. The physical and electrostatic barrier emerged from the epitaxial ordering of water results in a particular ionic distribution, which can prevent the direct adsorption of a variety of chemical species. The implications of our results delineate important contributions to the current understanding of crystallization and biomineralization processes.Fil: Kirch, Alexsandro. Universidade de Sao Paulo; BrasilFil: Mutisya, Sylvia Mueni. Universidade Federal Do Abc; BrasilFil: Sanchez, Veronica Muriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Simulación Computacional para Aplicaciones Tecnológicas; Argentina. Universidad Nacional de San Martín. Escuela de Ciencia y Tecnología; ArgentinaFil: de Almeida, James Moraes. Universidade de Sao Paulo; BrasilFil: Miranda, Caetano Rodrigues. Universidade de Sao Paulo; BrasilAmerican Chemical Society2018-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/88523Kirch, Alexsandro; Mutisya, Sylvia Mueni; Sanchez, Veronica Muriel; de Almeida, James Moraes; Miranda, Caetano Rodrigues; Fresh Molecular Look at Calcite-Brine Nanoconfined Interfaces; American Chemical Society; Journal of Physical Chemistry C; 122; 11; 3-2018; 6117-61271932-7447CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://pubs.acs.org/doi/10.1021/acs.jpcc.7b12582info:eu-repo/semantics/altIdentifier/doi/10.1021/acs.jpcc.7b12582info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:30:30Zoai:ri.conicet.gov.ar:11336/88523instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:30:30.481CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Fresh Molecular Look at Calcite-Brine Nanoconfined Interfaces
title Fresh Molecular Look at Calcite-Brine Nanoconfined Interfaces
spellingShingle Fresh Molecular Look at Calcite-Brine Nanoconfined Interfaces
Kirch, Alexsandro
calcite
NMR
fluid
molecular dynamics
title_short Fresh Molecular Look at Calcite-Brine Nanoconfined Interfaces
title_full Fresh Molecular Look at Calcite-Brine Nanoconfined Interfaces
title_fullStr Fresh Molecular Look at Calcite-Brine Nanoconfined Interfaces
title_full_unstemmed Fresh Molecular Look at Calcite-Brine Nanoconfined Interfaces
title_sort Fresh Molecular Look at Calcite-Brine Nanoconfined Interfaces
dc.creator.none.fl_str_mv Kirch, Alexsandro
Mutisya, Sylvia Mueni
Sanchez, Veronica Muriel
de Almeida, James Moraes
Miranda, Caetano Rodrigues
author Kirch, Alexsandro
author_facet Kirch, Alexsandro
Mutisya, Sylvia Mueni
Sanchez, Veronica Muriel
de Almeida, James Moraes
Miranda, Caetano Rodrigues
author_role author
author2 Mutisya, Sylvia Mueni
Sanchez, Veronica Muriel
de Almeida, James Moraes
Miranda, Caetano Rodrigues
author2_role author
author
author
author
dc.subject.none.fl_str_mv calcite
NMR
fluid
molecular dynamics
topic calcite
NMR
fluid
molecular dynamics
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.4
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Calcite-fluid interface plays a central role in geochemical, synthetic, and biological crystal growth. The ionic nature of the calcite surface can modify the fluid-solid interaction and the fluid properties under spatial confinement and can also influence the adsorption of chemical species. We investigate the structure of the solvent and ions (Na, Cl, and Ca) at the calcite-aqueous solution interface under confinement and how such environment modifies the properties of water. To properly investigate the system, molecular dynamics simulations were employed to analyze the hydrogen bond network and to calculate NMR relaxation times. Here, we provide a new insight with additional atomistically detailed analysis by relating the topology of the hydrogen bond network with the dynamical properties in nanoconfinement interfaces. We have shown that the strong geometrical constraints and the presence of ions do influence the hydrogen bond network, resulting in more extended geodesic paths. Hydrogen bond branches connect low to high dynamics molecules across the pore and hence may explain the gluelike mechanical properties observed in the confinement environment. Moreover, we showed that the surface water observed at the calcite interface is characterized by slow transversal spin relaxation time (T2) and highly coordinated water molecules. The physical and electrostatic barrier emerged from the epitaxial ordering of water results in a particular ionic distribution, which can prevent the direct adsorption of a variety of chemical species. The implications of our results delineate important contributions to the current understanding of crystallization and biomineralization processes.
Fil: Kirch, Alexsandro. Universidade de Sao Paulo; Brasil
Fil: Mutisya, Sylvia Mueni. Universidade Federal Do Abc; Brasil
Fil: Sanchez, Veronica Muriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Simulación Computacional para Aplicaciones Tecnológicas; Argentina. Universidad Nacional de San Martín. Escuela de Ciencia y Tecnología; Argentina
Fil: de Almeida, James Moraes. Universidade de Sao Paulo; Brasil
Fil: Miranda, Caetano Rodrigues. Universidade de Sao Paulo; Brasil
description Calcite-fluid interface plays a central role in geochemical, synthetic, and biological crystal growth. The ionic nature of the calcite surface can modify the fluid-solid interaction and the fluid properties under spatial confinement and can also influence the adsorption of chemical species. We investigate the structure of the solvent and ions (Na, Cl, and Ca) at the calcite-aqueous solution interface under confinement and how such environment modifies the properties of water. To properly investigate the system, molecular dynamics simulations were employed to analyze the hydrogen bond network and to calculate NMR relaxation times. Here, we provide a new insight with additional atomistically detailed analysis by relating the topology of the hydrogen bond network with the dynamical properties in nanoconfinement interfaces. We have shown that the strong geometrical constraints and the presence of ions do influence the hydrogen bond network, resulting in more extended geodesic paths. Hydrogen bond branches connect low to high dynamics molecules across the pore and hence may explain the gluelike mechanical properties observed in the confinement environment. Moreover, we showed that the surface water observed at the calcite interface is characterized by slow transversal spin relaxation time (T2) and highly coordinated water molecules. The physical and electrostatic barrier emerged from the epitaxial ordering of water results in a particular ionic distribution, which can prevent the direct adsorption of a variety of chemical species. The implications of our results delineate important contributions to the current understanding of crystallization and biomineralization processes.
publishDate 2018
dc.date.none.fl_str_mv 2018-03
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/88523
Kirch, Alexsandro; Mutisya, Sylvia Mueni; Sanchez, Veronica Muriel; de Almeida, James Moraes; Miranda, Caetano Rodrigues; Fresh Molecular Look at Calcite-Brine Nanoconfined Interfaces; American Chemical Society; Journal of Physical Chemistry C; 122; 11; 3-2018; 6117-6127
1932-7447
CONICET Digital
CONICET
url http://hdl.handle.net/11336/88523
identifier_str_mv Kirch, Alexsandro; Mutisya, Sylvia Mueni; Sanchez, Veronica Muriel; de Almeida, James Moraes; Miranda, Caetano Rodrigues; Fresh Molecular Look at Calcite-Brine Nanoconfined Interfaces; American Chemical Society; Journal of Physical Chemistry C; 122; 11; 3-2018; 6117-6127
1932-7447
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://pubs.acs.org/doi/10.1021/acs.jpcc.7b12582
info:eu-repo/semantics/altIdentifier/doi/10.1021/acs.jpcc.7b12582
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Chemical Society
publisher.none.fl_str_mv American Chemical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614313306750976
score 13.070432