Remote sensing data to assess compositional and structural indicators in dry woodland

Autores
Campos, Valeria Evelin; Gatica, Mario Gabriel; Cappa, Flavio Martín; Giannoni, Stella Maris; Campos, Claudia Monica
Año de publicación
2018
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Integrating field-based and remotely sensed data has proven valuable for assessing on-the-ground diversity of plants across a range of spatial scales. Here we assessed whether remotely sensed data is a good indicator of vegetation composition and structure in dry, Prosopis flexuosa-dominated woodlands. Our objectives were (1) to quantify on-the-ground vegetation composition and structure using (A) field-based methods and (B) remotely sensed images and analysis techniques, and (2) to evaluate how well the data extracted from remotely sensed data estimate field-based measures of vegetation composition and structure. We selected 40 individuals of P. flexuosa in Ischigualasto Provincial Park (San Juan, Argentina) and its influence zone. Each individual was the center of a plot (1500-m2) where we recorded richness (compositional indicator) and abundance (structural indicator) of trees, shrubs and other plants (i.e. cacti, grasses and forbs). To assess woodland structure, we evaluated canopy area of each P. flexuosa and the proportion of adult P. flexuosa trees in a plot. In addition, we used Landsat 8 OLI to calculate SATVI (Soil Adjusted Total Vegetation Index) values from the pixel that corresponds with the center of each sample plot, and then estimated first- and second-order texture measures (in 3 × 3 and 5 × 5 moving window sizes). We fitted generalized linear models with different error distributions. Vegetation richness was significantly and directly related to range and entropy (3 × 3 and 5 × 5 windows). Both trees and shrubs, were related to SATVI values and first- and second-order means (3 × 3 and 5 × 5 windows). Moreover, shrub abundance was inversely related to range and entropy (5 × 5 window); and the “other plants” group was inversely related to first- and second-order means in the same window. Variance of the canopy area was directly related to range (5 × 5 window); however, proportion of adults was not related to remote sensing data. Our findings suggest satellite imagery-derived image texture is a valuable tool for management and conservation, and can indicate areas of high plant species richness and abundance of trees and shrubs and help differentiate areas of different canopy sizes in dry P. flexuosa-dominated woodlands of Argentina.
Fil: Campos, Valeria Evelin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Centro de Investigaciones de la Geosfera y Biosfera. Universidad Nacional de San Juan. Facultad de Ciencias Exactas Físicas y Naturales. Centro de Investigaciones de la Geosfera y Biosfera; Argentina
Fil: Gatica, Mario Gabriel. Universidad Nacional de San Juan; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Cappa, Flavio Martín. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Centro de Investigaciones de la Geosfera y Biosfera. Universidad Nacional de San Juan. Facultad de Ciencias Exactas Físicas y Naturales. Centro de Investigaciones de la Geosfera y Biosfera; Argentina
Fil: Giannoni, Stella Maris. Universidad Nacional de San Juan; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Centro de Investigaciones de la Geosfera y Biosfera. Universidad Nacional de San Juan. Facultad de Ciencias Exactas Físicas y Naturales. Centro de Investigaciones de la Geosfera y Biosfera; Argentina
Fil: Campos, Claudia Monica. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Argentino de Investigaciones de las Zonas Áridas. Provincia de Mendoza. Instituto Argentino de Investigaciones de las Zonas Áridas. Universidad Nacional de Cuyo. Instituto Argentino de Investigaciones de las Zonas Áridas; Argentina
Materia
ARGENTINA
DESERT ECOSYSTEM
PROSOPIS FLEXUOSA
RICHNESS
TEXTURE MEASURES
WOODLAND STRUCTURE
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/86728

id CONICETDig_b4b9df2141ef2e9f4ea00e6cf873b6fe
oai_identifier_str oai:ri.conicet.gov.ar:11336/86728
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Remote sensing data to assess compositional and structural indicators in dry woodlandCampos, Valeria EvelinGatica, Mario GabrielCappa, Flavio MartínGiannoni, Stella MarisCampos, Claudia MonicaARGENTINADESERT ECOSYSTEMPROSOPIS FLEXUOSARICHNESSTEXTURE MEASURESWOODLAND STRUCTUREhttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1Integrating field-based and remotely sensed data has proven valuable for assessing on-the-ground diversity of plants across a range of spatial scales. Here we assessed whether remotely sensed data is a good indicator of vegetation composition and structure in dry, Prosopis flexuosa-dominated woodlands. Our objectives were (1) to quantify on-the-ground vegetation composition and structure using (A) field-based methods and (B) remotely sensed images and analysis techniques, and (2) to evaluate how well the data extracted from remotely sensed data estimate field-based measures of vegetation composition and structure. We selected 40 individuals of P. flexuosa in Ischigualasto Provincial Park (San Juan, Argentina) and its influence zone. Each individual was the center of a plot (1500-m2) where we recorded richness (compositional indicator) and abundance (structural indicator) of trees, shrubs and other plants (i.e. cacti, grasses and forbs). To assess woodland structure, we evaluated canopy area of each P. flexuosa and the proportion of adult P. flexuosa trees in a plot. In addition, we used Landsat 8 OLI to calculate SATVI (Soil Adjusted Total Vegetation Index) values from the pixel that corresponds with the center of each sample plot, and then estimated first- and second-order texture measures (in 3 × 3 and 5 × 5 moving window sizes). We fitted generalized linear models with different error distributions. Vegetation richness was significantly and directly related to range and entropy (3 × 3 and 5 × 5 windows). Both trees and shrubs, were related to SATVI values and first- and second-order means (3 × 3 and 5 × 5 windows). Moreover, shrub abundance was inversely related to range and entropy (5 × 5 window); and the “other plants” group was inversely related to first- and second-order means in the same window. Variance of the canopy area was directly related to range (5 × 5 window); however, proportion of adults was not related to remote sensing data. Our findings suggest satellite imagery-derived image texture is a valuable tool for management and conservation, and can indicate areas of high plant species richness and abundance of trees and shrubs and help differentiate areas of different canopy sizes in dry P. flexuosa-dominated woodlands of Argentina.Fil: Campos, Valeria Evelin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Centro de Investigaciones de la Geosfera y Biosfera. Universidad Nacional de San Juan. Facultad de Ciencias Exactas Físicas y Naturales. Centro de Investigaciones de la Geosfera y Biosfera; ArgentinaFil: Gatica, Mario Gabriel. Universidad Nacional de San Juan; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Cappa, Flavio Martín. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Centro de Investigaciones de la Geosfera y Biosfera. Universidad Nacional de San Juan. Facultad de Ciencias Exactas Físicas y Naturales. Centro de Investigaciones de la Geosfera y Biosfera; ArgentinaFil: Giannoni, Stella Maris. Universidad Nacional de San Juan; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Centro de Investigaciones de la Geosfera y Biosfera. Universidad Nacional de San Juan. Facultad de Ciencias Exactas Físicas y Naturales. Centro de Investigaciones de la Geosfera y Biosfera; ArgentinaFil: Campos, Claudia Monica. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Argentino de Investigaciones de las Zonas Áridas. Provincia de Mendoza. Instituto Argentino de Investigaciones de las Zonas Áridas. Universidad Nacional de Cuyo. Instituto Argentino de Investigaciones de las Zonas Áridas; ArgentinaElsevier Science2018-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/86728Campos, Valeria Evelin; Gatica, Mario Gabriel; Cappa, Flavio Martín; Giannoni, Stella Maris; Campos, Claudia Monica; Remote sensing data to assess compositional and structural indicators in dry woodland; Elsevier Science; Ecological Indicators; 88; 5-2018; 63-701470-160XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.ecolind.2018.01.032info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S1470160X18300335info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:57:05Zoai:ri.conicet.gov.ar:11336/86728instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:57:05.726CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Remote sensing data to assess compositional and structural indicators in dry woodland
title Remote sensing data to assess compositional and structural indicators in dry woodland
spellingShingle Remote sensing data to assess compositional and structural indicators in dry woodland
Campos, Valeria Evelin
ARGENTINA
DESERT ECOSYSTEM
PROSOPIS FLEXUOSA
RICHNESS
TEXTURE MEASURES
WOODLAND STRUCTURE
title_short Remote sensing data to assess compositional and structural indicators in dry woodland
title_full Remote sensing data to assess compositional and structural indicators in dry woodland
title_fullStr Remote sensing data to assess compositional and structural indicators in dry woodland
title_full_unstemmed Remote sensing data to assess compositional and structural indicators in dry woodland
title_sort Remote sensing data to assess compositional and structural indicators in dry woodland
dc.creator.none.fl_str_mv Campos, Valeria Evelin
Gatica, Mario Gabriel
Cappa, Flavio Martín
Giannoni, Stella Maris
Campos, Claudia Monica
author Campos, Valeria Evelin
author_facet Campos, Valeria Evelin
Gatica, Mario Gabriel
Cappa, Flavio Martín
Giannoni, Stella Maris
Campos, Claudia Monica
author_role author
author2 Gatica, Mario Gabriel
Cappa, Flavio Martín
Giannoni, Stella Maris
Campos, Claudia Monica
author2_role author
author
author
author
dc.subject.none.fl_str_mv ARGENTINA
DESERT ECOSYSTEM
PROSOPIS FLEXUOSA
RICHNESS
TEXTURE MEASURES
WOODLAND STRUCTURE
topic ARGENTINA
DESERT ECOSYSTEM
PROSOPIS FLEXUOSA
RICHNESS
TEXTURE MEASURES
WOODLAND STRUCTURE
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.6
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Integrating field-based and remotely sensed data has proven valuable for assessing on-the-ground diversity of plants across a range of spatial scales. Here we assessed whether remotely sensed data is a good indicator of vegetation composition and structure in dry, Prosopis flexuosa-dominated woodlands. Our objectives were (1) to quantify on-the-ground vegetation composition and structure using (A) field-based methods and (B) remotely sensed images and analysis techniques, and (2) to evaluate how well the data extracted from remotely sensed data estimate field-based measures of vegetation composition and structure. We selected 40 individuals of P. flexuosa in Ischigualasto Provincial Park (San Juan, Argentina) and its influence zone. Each individual was the center of a plot (1500-m2) where we recorded richness (compositional indicator) and abundance (structural indicator) of trees, shrubs and other plants (i.e. cacti, grasses and forbs). To assess woodland structure, we evaluated canopy area of each P. flexuosa and the proportion of adult P. flexuosa trees in a plot. In addition, we used Landsat 8 OLI to calculate SATVI (Soil Adjusted Total Vegetation Index) values from the pixel that corresponds with the center of each sample plot, and then estimated first- and second-order texture measures (in 3 × 3 and 5 × 5 moving window sizes). We fitted generalized linear models with different error distributions. Vegetation richness was significantly and directly related to range and entropy (3 × 3 and 5 × 5 windows). Both trees and shrubs, were related to SATVI values and first- and second-order means (3 × 3 and 5 × 5 windows). Moreover, shrub abundance was inversely related to range and entropy (5 × 5 window); and the “other plants” group was inversely related to first- and second-order means in the same window. Variance of the canopy area was directly related to range (5 × 5 window); however, proportion of adults was not related to remote sensing data. Our findings suggest satellite imagery-derived image texture is a valuable tool for management and conservation, and can indicate areas of high plant species richness and abundance of trees and shrubs and help differentiate areas of different canopy sizes in dry P. flexuosa-dominated woodlands of Argentina.
Fil: Campos, Valeria Evelin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Centro de Investigaciones de la Geosfera y Biosfera. Universidad Nacional de San Juan. Facultad de Ciencias Exactas Físicas y Naturales. Centro de Investigaciones de la Geosfera y Biosfera; Argentina
Fil: Gatica, Mario Gabriel. Universidad Nacional de San Juan; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Cappa, Flavio Martín. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Centro de Investigaciones de la Geosfera y Biosfera. Universidad Nacional de San Juan. Facultad de Ciencias Exactas Físicas y Naturales. Centro de Investigaciones de la Geosfera y Biosfera; Argentina
Fil: Giannoni, Stella Maris. Universidad Nacional de San Juan; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Centro de Investigaciones de la Geosfera y Biosfera. Universidad Nacional de San Juan. Facultad de Ciencias Exactas Físicas y Naturales. Centro de Investigaciones de la Geosfera y Biosfera; Argentina
Fil: Campos, Claudia Monica. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Argentino de Investigaciones de las Zonas Áridas. Provincia de Mendoza. Instituto Argentino de Investigaciones de las Zonas Áridas. Universidad Nacional de Cuyo. Instituto Argentino de Investigaciones de las Zonas Áridas; Argentina
description Integrating field-based and remotely sensed data has proven valuable for assessing on-the-ground diversity of plants across a range of spatial scales. Here we assessed whether remotely sensed data is a good indicator of vegetation composition and structure in dry, Prosopis flexuosa-dominated woodlands. Our objectives were (1) to quantify on-the-ground vegetation composition and structure using (A) field-based methods and (B) remotely sensed images and analysis techniques, and (2) to evaluate how well the data extracted from remotely sensed data estimate field-based measures of vegetation composition and structure. We selected 40 individuals of P. flexuosa in Ischigualasto Provincial Park (San Juan, Argentina) and its influence zone. Each individual was the center of a plot (1500-m2) where we recorded richness (compositional indicator) and abundance (structural indicator) of trees, shrubs and other plants (i.e. cacti, grasses and forbs). To assess woodland structure, we evaluated canopy area of each P. flexuosa and the proportion of adult P. flexuosa trees in a plot. In addition, we used Landsat 8 OLI to calculate SATVI (Soil Adjusted Total Vegetation Index) values from the pixel that corresponds with the center of each sample plot, and then estimated first- and second-order texture measures (in 3 × 3 and 5 × 5 moving window sizes). We fitted generalized linear models with different error distributions. Vegetation richness was significantly and directly related to range and entropy (3 × 3 and 5 × 5 windows). Both trees and shrubs, were related to SATVI values and first- and second-order means (3 × 3 and 5 × 5 windows). Moreover, shrub abundance was inversely related to range and entropy (5 × 5 window); and the “other plants” group was inversely related to first- and second-order means in the same window. Variance of the canopy area was directly related to range (5 × 5 window); however, proportion of adults was not related to remote sensing data. Our findings suggest satellite imagery-derived image texture is a valuable tool for management and conservation, and can indicate areas of high plant species richness and abundance of trees and shrubs and help differentiate areas of different canopy sizes in dry P. flexuosa-dominated woodlands of Argentina.
publishDate 2018
dc.date.none.fl_str_mv 2018-05
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/86728
Campos, Valeria Evelin; Gatica, Mario Gabriel; Cappa, Flavio Martín; Giannoni, Stella Maris; Campos, Claudia Monica; Remote sensing data to assess compositional and structural indicators in dry woodland; Elsevier Science; Ecological Indicators; 88; 5-2018; 63-70
1470-160X
CONICET Digital
CONICET
url http://hdl.handle.net/11336/86728
identifier_str_mv Campos, Valeria Evelin; Gatica, Mario Gabriel; Cappa, Flavio Martín; Giannoni, Stella Maris; Campos, Claudia Monica; Remote sensing data to assess compositional and structural indicators in dry woodland; Elsevier Science; Ecological Indicators; 88; 5-2018; 63-70
1470-160X
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.ecolind.2018.01.032
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S1470160X18300335
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier Science
publisher.none.fl_str_mv Elsevier Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269439101239296
score 13.13397