Remote sensing data to assess compositional and structural indicators in dry woodland
- Autores
- Campos, Valeria Evelin; Gatica, Mario Gabriel; Cappa, Flavio Martín; Giannoni, Stella Maris; Campos, Claudia Monica
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Integrating field-based and remotely sensed data has proven valuable for assessing on-the-ground diversity of plants across a range of spatial scales. Here we assessed whether remotely sensed data is a good indicator of vegetation composition and structure in dry, Prosopis flexuosa-dominated woodlands. Our objectives were (1) to quantify on-the-ground vegetation composition and structure using (A) field-based methods and (B) remotely sensed images and analysis techniques, and (2) to evaluate how well the data extracted from remotely sensed data estimate field-based measures of vegetation composition and structure. We selected 40 individuals of P. flexuosa in Ischigualasto Provincial Park (San Juan, Argentina) and its influence zone. Each individual was the center of a plot (1500-m2) where we recorded richness (compositional indicator) and abundance (structural indicator) of trees, shrubs and other plants (i.e. cacti, grasses and forbs). To assess woodland structure, we evaluated canopy area of each P. flexuosa and the proportion of adult P. flexuosa trees in a plot. In addition, we used Landsat 8 OLI to calculate SATVI (Soil Adjusted Total Vegetation Index) values from the pixel that corresponds with the center of each sample plot, and then estimated first- and second-order texture measures (in 3 × 3 and 5 × 5 moving window sizes). We fitted generalized linear models with different error distributions. Vegetation richness was significantly and directly related to range and entropy (3 × 3 and 5 × 5 windows). Both trees and shrubs, were related to SATVI values and first- and second-order means (3 × 3 and 5 × 5 windows). Moreover, shrub abundance was inversely related to range and entropy (5 × 5 window); and the “other plants” group was inversely related to first- and second-order means in the same window. Variance of the canopy area was directly related to range (5 × 5 window); however, proportion of adults was not related to remote sensing data. Our findings suggest satellite imagery-derived image texture is a valuable tool for management and conservation, and can indicate areas of high plant species richness and abundance of trees and shrubs and help differentiate areas of different canopy sizes in dry P. flexuosa-dominated woodlands of Argentina.
Fil: Campos, Valeria Evelin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Centro de Investigaciones de la Geosfera y Biosfera. Universidad Nacional de San Juan. Facultad de Ciencias Exactas Físicas y Naturales. Centro de Investigaciones de la Geosfera y Biosfera; Argentina
Fil: Gatica, Mario Gabriel. Universidad Nacional de San Juan; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Cappa, Flavio Martín. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Centro de Investigaciones de la Geosfera y Biosfera. Universidad Nacional de San Juan. Facultad de Ciencias Exactas Físicas y Naturales. Centro de Investigaciones de la Geosfera y Biosfera; Argentina
Fil: Giannoni, Stella Maris. Universidad Nacional de San Juan; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Centro de Investigaciones de la Geosfera y Biosfera. Universidad Nacional de San Juan. Facultad de Ciencias Exactas Físicas y Naturales. Centro de Investigaciones de la Geosfera y Biosfera; Argentina
Fil: Campos, Claudia Monica. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Argentino de Investigaciones de las Zonas Áridas. Provincia de Mendoza. Instituto Argentino de Investigaciones de las Zonas Áridas. Universidad Nacional de Cuyo. Instituto Argentino de Investigaciones de las Zonas Áridas; Argentina - Materia
-
ARGENTINA
DESERT ECOSYSTEM
PROSOPIS FLEXUOSA
RICHNESS
TEXTURE MEASURES
WOODLAND STRUCTURE - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/86728
Ver los metadatos del registro completo
id |
CONICETDig_b4b9df2141ef2e9f4ea00e6cf873b6fe |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/86728 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Remote sensing data to assess compositional and structural indicators in dry woodlandCampos, Valeria EvelinGatica, Mario GabrielCappa, Flavio MartínGiannoni, Stella MarisCampos, Claudia MonicaARGENTINADESERT ECOSYSTEMPROSOPIS FLEXUOSARICHNESSTEXTURE MEASURESWOODLAND STRUCTUREhttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1Integrating field-based and remotely sensed data has proven valuable for assessing on-the-ground diversity of plants across a range of spatial scales. Here we assessed whether remotely sensed data is a good indicator of vegetation composition and structure in dry, Prosopis flexuosa-dominated woodlands. Our objectives were (1) to quantify on-the-ground vegetation composition and structure using (A) field-based methods and (B) remotely sensed images and analysis techniques, and (2) to evaluate how well the data extracted from remotely sensed data estimate field-based measures of vegetation composition and structure. We selected 40 individuals of P. flexuosa in Ischigualasto Provincial Park (San Juan, Argentina) and its influence zone. Each individual was the center of a plot (1500-m2) where we recorded richness (compositional indicator) and abundance (structural indicator) of trees, shrubs and other plants (i.e. cacti, grasses and forbs). To assess woodland structure, we evaluated canopy area of each P. flexuosa and the proportion of adult P. flexuosa trees in a plot. In addition, we used Landsat 8 OLI to calculate SATVI (Soil Adjusted Total Vegetation Index) values from the pixel that corresponds with the center of each sample plot, and then estimated first- and second-order texture measures (in 3 × 3 and 5 × 5 moving window sizes). We fitted generalized linear models with different error distributions. Vegetation richness was significantly and directly related to range and entropy (3 × 3 and 5 × 5 windows). Both trees and shrubs, were related to SATVI values and first- and second-order means (3 × 3 and 5 × 5 windows). Moreover, shrub abundance was inversely related to range and entropy (5 × 5 window); and the “other plants” group was inversely related to first- and second-order means in the same window. Variance of the canopy area was directly related to range (5 × 5 window); however, proportion of adults was not related to remote sensing data. Our findings suggest satellite imagery-derived image texture is a valuable tool for management and conservation, and can indicate areas of high plant species richness and abundance of trees and shrubs and help differentiate areas of different canopy sizes in dry P. flexuosa-dominated woodlands of Argentina.Fil: Campos, Valeria Evelin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Centro de Investigaciones de la Geosfera y Biosfera. Universidad Nacional de San Juan. Facultad de Ciencias Exactas Físicas y Naturales. Centro de Investigaciones de la Geosfera y Biosfera; ArgentinaFil: Gatica, Mario Gabriel. Universidad Nacional de San Juan; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Cappa, Flavio Martín. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Centro de Investigaciones de la Geosfera y Biosfera. Universidad Nacional de San Juan. Facultad de Ciencias Exactas Físicas y Naturales. Centro de Investigaciones de la Geosfera y Biosfera; ArgentinaFil: Giannoni, Stella Maris. Universidad Nacional de San Juan; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Centro de Investigaciones de la Geosfera y Biosfera. Universidad Nacional de San Juan. Facultad de Ciencias Exactas Físicas y Naturales. Centro de Investigaciones de la Geosfera y Biosfera; ArgentinaFil: Campos, Claudia Monica. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Argentino de Investigaciones de las Zonas Áridas. Provincia de Mendoza. Instituto Argentino de Investigaciones de las Zonas Áridas. Universidad Nacional de Cuyo. Instituto Argentino de Investigaciones de las Zonas Áridas; ArgentinaElsevier Science2018-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/86728Campos, Valeria Evelin; Gatica, Mario Gabriel; Cappa, Flavio Martín; Giannoni, Stella Maris; Campos, Claudia Monica; Remote sensing data to assess compositional and structural indicators in dry woodland; Elsevier Science; Ecological Indicators; 88; 5-2018; 63-701470-160XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.ecolind.2018.01.032info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S1470160X18300335info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:57:05Zoai:ri.conicet.gov.ar:11336/86728instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:57:05.726CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Remote sensing data to assess compositional and structural indicators in dry woodland |
title |
Remote sensing data to assess compositional and structural indicators in dry woodland |
spellingShingle |
Remote sensing data to assess compositional and structural indicators in dry woodland Campos, Valeria Evelin ARGENTINA DESERT ECOSYSTEM PROSOPIS FLEXUOSA RICHNESS TEXTURE MEASURES WOODLAND STRUCTURE |
title_short |
Remote sensing data to assess compositional and structural indicators in dry woodland |
title_full |
Remote sensing data to assess compositional and structural indicators in dry woodland |
title_fullStr |
Remote sensing data to assess compositional and structural indicators in dry woodland |
title_full_unstemmed |
Remote sensing data to assess compositional and structural indicators in dry woodland |
title_sort |
Remote sensing data to assess compositional and structural indicators in dry woodland |
dc.creator.none.fl_str_mv |
Campos, Valeria Evelin Gatica, Mario Gabriel Cappa, Flavio Martín Giannoni, Stella Maris Campos, Claudia Monica |
author |
Campos, Valeria Evelin |
author_facet |
Campos, Valeria Evelin Gatica, Mario Gabriel Cappa, Flavio Martín Giannoni, Stella Maris Campos, Claudia Monica |
author_role |
author |
author2 |
Gatica, Mario Gabriel Cappa, Flavio Martín Giannoni, Stella Maris Campos, Claudia Monica |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
ARGENTINA DESERT ECOSYSTEM PROSOPIS FLEXUOSA RICHNESS TEXTURE MEASURES WOODLAND STRUCTURE |
topic |
ARGENTINA DESERT ECOSYSTEM PROSOPIS FLEXUOSA RICHNESS TEXTURE MEASURES WOODLAND STRUCTURE |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.6 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Integrating field-based and remotely sensed data has proven valuable for assessing on-the-ground diversity of plants across a range of spatial scales. Here we assessed whether remotely sensed data is a good indicator of vegetation composition and structure in dry, Prosopis flexuosa-dominated woodlands. Our objectives were (1) to quantify on-the-ground vegetation composition and structure using (A) field-based methods and (B) remotely sensed images and analysis techniques, and (2) to evaluate how well the data extracted from remotely sensed data estimate field-based measures of vegetation composition and structure. We selected 40 individuals of P. flexuosa in Ischigualasto Provincial Park (San Juan, Argentina) and its influence zone. Each individual was the center of a plot (1500-m2) where we recorded richness (compositional indicator) and abundance (structural indicator) of trees, shrubs and other plants (i.e. cacti, grasses and forbs). To assess woodland structure, we evaluated canopy area of each P. flexuosa and the proportion of adult P. flexuosa trees in a plot. In addition, we used Landsat 8 OLI to calculate SATVI (Soil Adjusted Total Vegetation Index) values from the pixel that corresponds with the center of each sample plot, and then estimated first- and second-order texture measures (in 3 × 3 and 5 × 5 moving window sizes). We fitted generalized linear models with different error distributions. Vegetation richness was significantly and directly related to range and entropy (3 × 3 and 5 × 5 windows). Both trees and shrubs, were related to SATVI values and first- and second-order means (3 × 3 and 5 × 5 windows). Moreover, shrub abundance was inversely related to range and entropy (5 × 5 window); and the “other plants” group was inversely related to first- and second-order means in the same window. Variance of the canopy area was directly related to range (5 × 5 window); however, proportion of adults was not related to remote sensing data. Our findings suggest satellite imagery-derived image texture is a valuable tool for management and conservation, and can indicate areas of high plant species richness and abundance of trees and shrubs and help differentiate areas of different canopy sizes in dry P. flexuosa-dominated woodlands of Argentina. Fil: Campos, Valeria Evelin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Centro de Investigaciones de la Geosfera y Biosfera. Universidad Nacional de San Juan. Facultad de Ciencias Exactas Físicas y Naturales. Centro de Investigaciones de la Geosfera y Biosfera; Argentina Fil: Gatica, Mario Gabriel. Universidad Nacional de San Juan; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Cappa, Flavio Martín. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Centro de Investigaciones de la Geosfera y Biosfera. Universidad Nacional de San Juan. Facultad de Ciencias Exactas Físicas y Naturales. Centro de Investigaciones de la Geosfera y Biosfera; Argentina Fil: Giannoni, Stella Maris. Universidad Nacional de San Juan; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Centro de Investigaciones de la Geosfera y Biosfera. Universidad Nacional de San Juan. Facultad de Ciencias Exactas Físicas y Naturales. Centro de Investigaciones de la Geosfera y Biosfera; Argentina Fil: Campos, Claudia Monica. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Argentino de Investigaciones de las Zonas Áridas. Provincia de Mendoza. Instituto Argentino de Investigaciones de las Zonas Áridas. Universidad Nacional de Cuyo. Instituto Argentino de Investigaciones de las Zonas Áridas; Argentina |
description |
Integrating field-based and remotely sensed data has proven valuable for assessing on-the-ground diversity of plants across a range of spatial scales. Here we assessed whether remotely sensed data is a good indicator of vegetation composition and structure in dry, Prosopis flexuosa-dominated woodlands. Our objectives were (1) to quantify on-the-ground vegetation composition and structure using (A) field-based methods and (B) remotely sensed images and analysis techniques, and (2) to evaluate how well the data extracted from remotely sensed data estimate field-based measures of vegetation composition and structure. We selected 40 individuals of P. flexuosa in Ischigualasto Provincial Park (San Juan, Argentina) and its influence zone. Each individual was the center of a plot (1500-m2) where we recorded richness (compositional indicator) and abundance (structural indicator) of trees, shrubs and other plants (i.e. cacti, grasses and forbs). To assess woodland structure, we evaluated canopy area of each P. flexuosa and the proportion of adult P. flexuosa trees in a plot. In addition, we used Landsat 8 OLI to calculate SATVI (Soil Adjusted Total Vegetation Index) values from the pixel that corresponds with the center of each sample plot, and then estimated first- and second-order texture measures (in 3 × 3 and 5 × 5 moving window sizes). We fitted generalized linear models with different error distributions. Vegetation richness was significantly and directly related to range and entropy (3 × 3 and 5 × 5 windows). Both trees and shrubs, were related to SATVI values and first- and second-order means (3 × 3 and 5 × 5 windows). Moreover, shrub abundance was inversely related to range and entropy (5 × 5 window); and the “other plants” group was inversely related to first- and second-order means in the same window. Variance of the canopy area was directly related to range (5 × 5 window); however, proportion of adults was not related to remote sensing data. Our findings suggest satellite imagery-derived image texture is a valuable tool for management and conservation, and can indicate areas of high plant species richness and abundance of trees and shrubs and help differentiate areas of different canopy sizes in dry P. flexuosa-dominated woodlands of Argentina. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-05 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/86728 Campos, Valeria Evelin; Gatica, Mario Gabriel; Cappa, Flavio Martín; Giannoni, Stella Maris; Campos, Claudia Monica; Remote sensing data to assess compositional and structural indicators in dry woodland; Elsevier Science; Ecological Indicators; 88; 5-2018; 63-70 1470-160X CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/86728 |
identifier_str_mv |
Campos, Valeria Evelin; Gatica, Mario Gabriel; Cappa, Flavio Martín; Giannoni, Stella Maris; Campos, Claudia Monica; Remote sensing data to assess compositional and structural indicators in dry woodland; Elsevier Science; Ecological Indicators; 88; 5-2018; 63-70 1470-160X CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.ecolind.2018.01.032 info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S1470160X18300335 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science |
publisher.none.fl_str_mv |
Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269439101239296 |
score |
13.13397 |