Pruning: a tool to optimize the layout of large scale arrays for ultra-high-energy air-shower detection
- Autores
- Benoit Lévy, Aurélien; Kotera, Kumiko; Tueros, Matias Jorge
- Año de publicación
- 2024
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The deployment of several large scale arrays is envisioned to study astroparticles at ultra-high energies. In order to circumvent the heavy computational costs of exploring and optimizing their layouts, we have developed a pruning method. It consists in i) running a set of microscopic simulations and interpolate them over a dense, regularly spaced array of detection units, and ii) pruning the unnecessary units out of the layout, in order to obtain the shower footprint on a newly shaped layout. This method offers flexibility to test various layout parameters, instrumental constraints, and physical inputs, with a drastic reduction in the required CPU time. The method can be universally applied to optimize arrays of any size, and using any detection techniques. For demonstration, we apply the pruning tool to radio antenna layouts, which allows us to discuss the interplay between the energy and inclination of air-showers on the size of the radio footprint and the intensity of the signal on the ground. Some rule-of-thumb conclusions that can be drawn for this specific case are: i) a hexagonal geometry is more efficient than a triangular geometry, ii) the detection efficiency of the array is stable to changes in the spacing between radio antennas around 1000 m step size, iii) for a given number of antennas, adding a granular infill on top of a coarse hexagonal array is more efficient than instrumenting the full array with a less dense spacing.
Fil: Benoit Lévy, Aurélien. Universite Paris-saclay (universite Paris-saclay);
Fil: Kotera, Kumiko. Sorbonne University; Francia
Fil: Tueros, Matias Jorge. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina - Materia
-
Experimental Exposure
Simulations
Cosmic Rays - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/264036
Ver los metadatos del registro completo
id |
CONICETDig_b47d25b5cad27daddf3dc0339e8f518b |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/264036 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Pruning: a tool to optimize the layout of large scale arrays for ultra-high-energy air-shower detectionBenoit Lévy, AurélienKotera, KumikoTueros, Matias JorgeExperimental ExposureSimulationsCosmic Rayshttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1The deployment of several large scale arrays is envisioned to study astroparticles at ultra-high energies. In order to circumvent the heavy computational costs of exploring and optimizing their layouts, we have developed a pruning method. It consists in i) running a set of microscopic simulations and interpolate them over a dense, regularly spaced array of detection units, and ii) pruning the unnecessary units out of the layout, in order to obtain the shower footprint on a newly shaped layout. This method offers flexibility to test various layout parameters, instrumental constraints, and physical inputs, with a drastic reduction in the required CPU time. The method can be universally applied to optimize arrays of any size, and using any detection techniques. For demonstration, we apply the pruning tool to radio antenna layouts, which allows us to discuss the interplay between the energy and inclination of air-showers on the size of the radio footprint and the intensity of the signal on the ground. Some rule-of-thumb conclusions that can be drawn for this specific case are: i) a hexagonal geometry is more efficient than a triangular geometry, ii) the detection efficiency of the array is stable to changes in the spacing between radio antennas around 1000 m step size, iii) for a given number of antennas, adding a granular infill on top of a coarse hexagonal array is more efficient than instrumenting the full array with a less dense spacing.Fil: Benoit Lévy, Aurélien. Universite Paris-saclay (universite Paris-saclay);Fil: Kotera, Kumiko. Sorbonne University; FranciaFil: Tueros, Matias Jorge. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; ArgentinaIOP Publishing2024-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/264036Benoit Lévy, Aurélien; Kotera, Kumiko; Tueros, Matias Jorge; Pruning: a tool to optimize the layout of large scale arrays for ultra-high-energy air-shower detection; IOP Publishing; Journal of Instrumentation; 19; 4; 4-2024; 1-201748-0221CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://iopscience.iop.org/article/10.1088/1748-0221/19/04/P04006info:eu-repo/semantics/altIdentifier/doi/10.1088/1748-0221/19/04/P04006info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:06:12Zoai:ri.conicet.gov.ar:11336/264036instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:06:12.407CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Pruning: a tool to optimize the layout of large scale arrays for ultra-high-energy air-shower detection |
title |
Pruning: a tool to optimize the layout of large scale arrays for ultra-high-energy air-shower detection |
spellingShingle |
Pruning: a tool to optimize the layout of large scale arrays for ultra-high-energy air-shower detection Benoit Lévy, Aurélien Experimental Exposure Simulations Cosmic Rays |
title_short |
Pruning: a tool to optimize the layout of large scale arrays for ultra-high-energy air-shower detection |
title_full |
Pruning: a tool to optimize the layout of large scale arrays for ultra-high-energy air-shower detection |
title_fullStr |
Pruning: a tool to optimize the layout of large scale arrays for ultra-high-energy air-shower detection |
title_full_unstemmed |
Pruning: a tool to optimize the layout of large scale arrays for ultra-high-energy air-shower detection |
title_sort |
Pruning: a tool to optimize the layout of large scale arrays for ultra-high-energy air-shower detection |
dc.creator.none.fl_str_mv |
Benoit Lévy, Aurélien Kotera, Kumiko Tueros, Matias Jorge |
author |
Benoit Lévy, Aurélien |
author_facet |
Benoit Lévy, Aurélien Kotera, Kumiko Tueros, Matias Jorge |
author_role |
author |
author2 |
Kotera, Kumiko Tueros, Matias Jorge |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Experimental Exposure Simulations Cosmic Rays |
topic |
Experimental Exposure Simulations Cosmic Rays |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The deployment of several large scale arrays is envisioned to study astroparticles at ultra-high energies. In order to circumvent the heavy computational costs of exploring and optimizing their layouts, we have developed a pruning method. It consists in i) running a set of microscopic simulations and interpolate them over a dense, regularly spaced array of detection units, and ii) pruning the unnecessary units out of the layout, in order to obtain the shower footprint on a newly shaped layout. This method offers flexibility to test various layout parameters, instrumental constraints, and physical inputs, with a drastic reduction in the required CPU time. The method can be universally applied to optimize arrays of any size, and using any detection techniques. For demonstration, we apply the pruning tool to radio antenna layouts, which allows us to discuss the interplay between the energy and inclination of air-showers on the size of the radio footprint and the intensity of the signal on the ground. Some rule-of-thumb conclusions that can be drawn for this specific case are: i) a hexagonal geometry is more efficient than a triangular geometry, ii) the detection efficiency of the array is stable to changes in the spacing between radio antennas around 1000 m step size, iii) for a given number of antennas, adding a granular infill on top of a coarse hexagonal array is more efficient than instrumenting the full array with a less dense spacing. Fil: Benoit Lévy, Aurélien. Universite Paris-saclay (universite Paris-saclay); Fil: Kotera, Kumiko. Sorbonne University; Francia Fil: Tueros, Matias Jorge. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina |
description |
The deployment of several large scale arrays is envisioned to study astroparticles at ultra-high energies. In order to circumvent the heavy computational costs of exploring and optimizing their layouts, we have developed a pruning method. It consists in i) running a set of microscopic simulations and interpolate them over a dense, regularly spaced array of detection units, and ii) pruning the unnecessary units out of the layout, in order to obtain the shower footprint on a newly shaped layout. This method offers flexibility to test various layout parameters, instrumental constraints, and physical inputs, with a drastic reduction in the required CPU time. The method can be universally applied to optimize arrays of any size, and using any detection techniques. For demonstration, we apply the pruning tool to radio antenna layouts, which allows us to discuss the interplay between the energy and inclination of air-showers on the size of the radio footprint and the intensity of the signal on the ground. Some rule-of-thumb conclusions that can be drawn for this specific case are: i) a hexagonal geometry is more efficient than a triangular geometry, ii) the detection efficiency of the array is stable to changes in the spacing between radio antennas around 1000 m step size, iii) for a given number of antennas, adding a granular infill on top of a coarse hexagonal array is more efficient than instrumenting the full array with a less dense spacing. |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024-04 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/264036 Benoit Lévy, Aurélien; Kotera, Kumiko; Tueros, Matias Jorge; Pruning: a tool to optimize the layout of large scale arrays for ultra-high-energy air-shower detection; IOP Publishing; Journal of Instrumentation; 19; 4; 4-2024; 1-20 1748-0221 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/264036 |
identifier_str_mv |
Benoit Lévy, Aurélien; Kotera, Kumiko; Tueros, Matias Jorge; Pruning: a tool to optimize the layout of large scale arrays for ultra-high-energy air-shower detection; IOP Publishing; Journal of Instrumentation; 19; 4; 4-2024; 1-20 1748-0221 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://iopscience.iop.org/article/10.1088/1748-0221/19/04/P04006 info:eu-repo/semantics/altIdentifier/doi/10.1088/1748-0221/19/04/P04006 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
IOP Publishing |
publisher.none.fl_str_mv |
IOP Publishing |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613907645202432 |
score |
13.070432 |