Pruning: a tool to optimize the layout of large scale arrays for ultra-high-energy air-shower detection

Autores
Benoit Lévy, Aurélien; Kotera, Kumiko; Tueros, Matias Jorge
Año de publicación
2024
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The deployment of several large scale arrays is envisioned to study astroparticles at ultra-high energies. In order to circumvent the heavy computational costs of exploring and optimizing their layouts, we have developed a pruning method. It consists in i) running a set of microscopic simulations and interpolate them over a dense, regularly spaced array of detection units, and ii) pruning the unnecessary units out of the layout, in order to obtain the shower footprint on a newly shaped layout. This method offers flexibility to test various layout parameters, instrumental constraints, and physical inputs, with a drastic reduction in the required CPU time. The method can be universally applied to optimize arrays of any size, and using any detection techniques. For demonstration, we apply the pruning tool to radio antenna layouts, which allows us to discuss the interplay between the energy and inclination of air-showers on the size of the radio footprint and the intensity of the signal on the ground. Some rule-of-thumb conclusions that can be drawn for this specific case are: i) a hexagonal geometry is more efficient than a triangular geometry, ii) the detection efficiency of the array is stable to changes in the spacing between radio antennas around 1000 m step size, iii) for a given number of antennas, adding a granular infill on top of a coarse hexagonal array is more efficient than instrumenting the full array with a less dense spacing.
Fil: Benoit Lévy, Aurélien. Universite Paris-saclay (universite Paris-saclay);
Fil: Kotera, Kumiko. Sorbonne University; Francia
Fil: Tueros, Matias Jorge. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina
Materia
Experimental Exposure
Simulations
Cosmic Rays
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/264036

id CONICETDig_b47d25b5cad27daddf3dc0339e8f518b
oai_identifier_str oai:ri.conicet.gov.ar:11336/264036
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Pruning: a tool to optimize the layout of large scale arrays for ultra-high-energy air-shower detectionBenoit Lévy, AurélienKotera, KumikoTueros, Matias JorgeExperimental ExposureSimulationsCosmic Rayshttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1The deployment of several large scale arrays is envisioned to study astroparticles at ultra-high energies. In order to circumvent the heavy computational costs of exploring and optimizing their layouts, we have developed a pruning method. It consists in i) running a set of microscopic simulations and interpolate them over a dense, regularly spaced array of detection units, and ii) pruning the unnecessary units out of the layout, in order to obtain the shower footprint on a newly shaped layout. This method offers flexibility to test various layout parameters, instrumental constraints, and physical inputs, with a drastic reduction in the required CPU time. The method can be universally applied to optimize arrays of any size, and using any detection techniques. For demonstration, we apply the pruning tool to radio antenna layouts, which allows us to discuss the interplay between the energy and inclination of air-showers on the size of the radio footprint and the intensity of the signal on the ground. Some rule-of-thumb conclusions that can be drawn for this specific case are: i) a hexagonal geometry is more efficient than a triangular geometry, ii) the detection efficiency of the array is stable to changes in the spacing between radio antennas around 1000 m step size, iii) for a given number of antennas, adding a granular infill on top of a coarse hexagonal array is more efficient than instrumenting the full array with a less dense spacing.Fil: Benoit Lévy, Aurélien. Universite Paris-saclay (universite Paris-saclay);Fil: Kotera, Kumiko. Sorbonne University; FranciaFil: Tueros, Matias Jorge. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; ArgentinaIOP Publishing2024-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/264036Benoit Lévy, Aurélien; Kotera, Kumiko; Tueros, Matias Jorge; Pruning: a tool to optimize the layout of large scale arrays for ultra-high-energy air-shower detection; IOP Publishing; Journal of Instrumentation; 19; 4; 4-2024; 1-201748-0221CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://iopscience.iop.org/article/10.1088/1748-0221/19/04/P04006info:eu-repo/semantics/altIdentifier/doi/10.1088/1748-0221/19/04/P04006info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:06:12Zoai:ri.conicet.gov.ar:11336/264036instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:06:12.407CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Pruning: a tool to optimize the layout of large scale arrays for ultra-high-energy air-shower detection
title Pruning: a tool to optimize the layout of large scale arrays for ultra-high-energy air-shower detection
spellingShingle Pruning: a tool to optimize the layout of large scale arrays for ultra-high-energy air-shower detection
Benoit Lévy, Aurélien
Experimental Exposure
Simulations
Cosmic Rays
title_short Pruning: a tool to optimize the layout of large scale arrays for ultra-high-energy air-shower detection
title_full Pruning: a tool to optimize the layout of large scale arrays for ultra-high-energy air-shower detection
title_fullStr Pruning: a tool to optimize the layout of large scale arrays for ultra-high-energy air-shower detection
title_full_unstemmed Pruning: a tool to optimize the layout of large scale arrays for ultra-high-energy air-shower detection
title_sort Pruning: a tool to optimize the layout of large scale arrays for ultra-high-energy air-shower detection
dc.creator.none.fl_str_mv Benoit Lévy, Aurélien
Kotera, Kumiko
Tueros, Matias Jorge
author Benoit Lévy, Aurélien
author_facet Benoit Lévy, Aurélien
Kotera, Kumiko
Tueros, Matias Jorge
author_role author
author2 Kotera, Kumiko
Tueros, Matias Jorge
author2_role author
author
dc.subject.none.fl_str_mv Experimental Exposure
Simulations
Cosmic Rays
topic Experimental Exposure
Simulations
Cosmic Rays
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv The deployment of several large scale arrays is envisioned to study astroparticles at ultra-high energies. In order to circumvent the heavy computational costs of exploring and optimizing their layouts, we have developed a pruning method. It consists in i) running a set of microscopic simulations and interpolate them over a dense, regularly spaced array of detection units, and ii) pruning the unnecessary units out of the layout, in order to obtain the shower footprint on a newly shaped layout. This method offers flexibility to test various layout parameters, instrumental constraints, and physical inputs, with a drastic reduction in the required CPU time. The method can be universally applied to optimize arrays of any size, and using any detection techniques. For demonstration, we apply the pruning tool to radio antenna layouts, which allows us to discuss the interplay between the energy and inclination of air-showers on the size of the radio footprint and the intensity of the signal on the ground. Some rule-of-thumb conclusions that can be drawn for this specific case are: i) a hexagonal geometry is more efficient than a triangular geometry, ii) the detection efficiency of the array is stable to changes in the spacing between radio antennas around 1000 m step size, iii) for a given number of antennas, adding a granular infill on top of a coarse hexagonal array is more efficient than instrumenting the full array with a less dense spacing.
Fil: Benoit Lévy, Aurélien. Universite Paris-saclay (universite Paris-saclay);
Fil: Kotera, Kumiko. Sorbonne University; Francia
Fil: Tueros, Matias Jorge. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina
description The deployment of several large scale arrays is envisioned to study astroparticles at ultra-high energies. In order to circumvent the heavy computational costs of exploring and optimizing their layouts, we have developed a pruning method. It consists in i) running a set of microscopic simulations and interpolate them over a dense, regularly spaced array of detection units, and ii) pruning the unnecessary units out of the layout, in order to obtain the shower footprint on a newly shaped layout. This method offers flexibility to test various layout parameters, instrumental constraints, and physical inputs, with a drastic reduction in the required CPU time. The method can be universally applied to optimize arrays of any size, and using any detection techniques. For demonstration, we apply the pruning tool to radio antenna layouts, which allows us to discuss the interplay between the energy and inclination of air-showers on the size of the radio footprint and the intensity of the signal on the ground. Some rule-of-thumb conclusions that can be drawn for this specific case are: i) a hexagonal geometry is more efficient than a triangular geometry, ii) the detection efficiency of the array is stable to changes in the spacing between radio antennas around 1000 m step size, iii) for a given number of antennas, adding a granular infill on top of a coarse hexagonal array is more efficient than instrumenting the full array with a less dense spacing.
publishDate 2024
dc.date.none.fl_str_mv 2024-04
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/264036
Benoit Lévy, Aurélien; Kotera, Kumiko; Tueros, Matias Jorge; Pruning: a tool to optimize the layout of large scale arrays for ultra-high-energy air-shower detection; IOP Publishing; Journal of Instrumentation; 19; 4; 4-2024; 1-20
1748-0221
CONICET Digital
CONICET
url http://hdl.handle.net/11336/264036
identifier_str_mv Benoit Lévy, Aurélien; Kotera, Kumiko; Tueros, Matias Jorge; Pruning: a tool to optimize the layout of large scale arrays for ultra-high-energy air-shower detection; IOP Publishing; Journal of Instrumentation; 19; 4; 4-2024; 1-20
1748-0221
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://iopscience.iop.org/article/10.1088/1748-0221/19/04/P04006
info:eu-repo/semantics/altIdentifier/doi/10.1088/1748-0221/19/04/P04006
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv IOP Publishing
publisher.none.fl_str_mv IOP Publishing
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613907645202432
score 13.070432