Improving the k-Compressibility of Hyper Reduced Order Models with Moving Sources: Applications to Welding and Phase Change Problems
- Autores
- Cosimo, Alejandro; Cardona, Alberto; Idelsohn, Sergio Rodolfo
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The simulation of engineering problems is quite often a complex task that can be time consuming. In this context, the use of Hyper Reduced Order Models (HROMs) is a promising alternative for real-time simulations. In this work, we study the design of HROMs for non-linear problems with a moving source. Applications to nonlinear phase change problems with temperature dependent thermophysical properties are particularly considered; however, the techniques developed can be applied in other fields as well.A basic assumption in the design of HROMs is that the quantities that will be hyper-reduced are k compressible in a certain basis in the sense that these quantities have at most k non-zero significant entries when expressed in terms of that basis. To reach the computational speed required for a real-time application, k must be small. This work examines different strategies for addressing hyper-reduction of the nonlinear terms with the objective of obtaining k compressible signals with a notably small k. To improve performance and robustness, it is proposed that the different contributing terms to the residual are separately hyper-reduced. Additionally, the use of moving reference frames is proposed to simulate and hyper-reduce cases that contain moving heat sources. Two application examples are presented: the solidification of a cube in which no heat source is present and the welding of a tube in which the problem posed by a moving heat source is analysed.
Fil: Cosimo, Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; Argentina
Fil: Cardona, Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; Argentina
Fil: Idelsohn, Sergio Rodolfo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; Argentina. Centro Int. de Metodos Numericos En Ingenierıa (cimne); España - Materia
-
Hyper Reduction
Moving Sources
Phase Change
Proper Orthogonal Decomposition
Reduced Order Models
Welding - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/78605
Ver los metadatos del registro completo
id |
CONICETDig_b45ef8161ff381cec0f585aecf0f3db3 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/78605 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Improving the k-Compressibility of Hyper Reduced Order Models with Moving Sources: Applications to Welding and Phase Change ProblemsCosimo, AlejandroCardona, AlbertoIdelsohn, Sergio RodolfoHyper ReductionMoving SourcesPhase ChangeProper Orthogonal DecompositionReduced Order ModelsWeldinghttps://purl.org/becyt/ford/2.3https://purl.org/becyt/ford/2The simulation of engineering problems is quite often a complex task that can be time consuming. In this context, the use of Hyper Reduced Order Models (HROMs) is a promising alternative for real-time simulations. In this work, we study the design of HROMs for non-linear problems with a moving source. Applications to nonlinear phase change problems with temperature dependent thermophysical properties are particularly considered; however, the techniques developed can be applied in other fields as well.A basic assumption in the design of HROMs is that the quantities that will be hyper-reduced are k compressible in a certain basis in the sense that these quantities have at most k non-zero significant entries when expressed in terms of that basis. To reach the computational speed required for a real-time application, k must be small. This work examines different strategies for addressing hyper-reduction of the nonlinear terms with the objective of obtaining k compressible signals with a notably small k. To improve performance and robustness, it is proposed that the different contributing terms to the residual are separately hyper-reduced. Additionally, the use of moving reference frames is proposed to simulate and hyper-reduce cases that contain moving heat sources. Two application examples are presented: the solidification of a cube in which no heat source is present and the welding of a tube in which the problem posed by a moving heat source is analysed.Fil: Cosimo, Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; ArgentinaFil: Cardona, Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; ArgentinaFil: Idelsohn, Sergio Rodolfo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; Argentina. Centro Int. de Metodos Numericos En Ingenierıa (cimne); EspañaElsevier Science Sa2014-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/78605Cosimo, Alejandro; Cardona, Alberto; Idelsohn, Sergio Rodolfo; Improving the k-Compressibility of Hyper Reduced Order Models with Moving Sources: Applications to Welding and Phase Change Problems; Elsevier Science Sa; Computer Methods in Applied Mechanics and Engineering; 274; 6-2014; 237-2630045-7825CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.cma.2014.02.011info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:26:41Zoai:ri.conicet.gov.ar:11336/78605instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:26:41.853CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Improving the k-Compressibility of Hyper Reduced Order Models with Moving Sources: Applications to Welding and Phase Change Problems |
title |
Improving the k-Compressibility of Hyper Reduced Order Models with Moving Sources: Applications to Welding and Phase Change Problems |
spellingShingle |
Improving the k-Compressibility of Hyper Reduced Order Models with Moving Sources: Applications to Welding and Phase Change Problems Cosimo, Alejandro Hyper Reduction Moving Sources Phase Change Proper Orthogonal Decomposition Reduced Order Models Welding |
title_short |
Improving the k-Compressibility of Hyper Reduced Order Models with Moving Sources: Applications to Welding and Phase Change Problems |
title_full |
Improving the k-Compressibility of Hyper Reduced Order Models with Moving Sources: Applications to Welding and Phase Change Problems |
title_fullStr |
Improving the k-Compressibility of Hyper Reduced Order Models with Moving Sources: Applications to Welding and Phase Change Problems |
title_full_unstemmed |
Improving the k-Compressibility of Hyper Reduced Order Models with Moving Sources: Applications to Welding and Phase Change Problems |
title_sort |
Improving the k-Compressibility of Hyper Reduced Order Models with Moving Sources: Applications to Welding and Phase Change Problems |
dc.creator.none.fl_str_mv |
Cosimo, Alejandro Cardona, Alberto Idelsohn, Sergio Rodolfo |
author |
Cosimo, Alejandro |
author_facet |
Cosimo, Alejandro Cardona, Alberto Idelsohn, Sergio Rodolfo |
author_role |
author |
author2 |
Cardona, Alberto Idelsohn, Sergio Rodolfo |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Hyper Reduction Moving Sources Phase Change Proper Orthogonal Decomposition Reduced Order Models Welding |
topic |
Hyper Reduction Moving Sources Phase Change Proper Orthogonal Decomposition Reduced Order Models Welding |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.3 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
The simulation of engineering problems is quite often a complex task that can be time consuming. In this context, the use of Hyper Reduced Order Models (HROMs) is a promising alternative for real-time simulations. In this work, we study the design of HROMs for non-linear problems with a moving source. Applications to nonlinear phase change problems with temperature dependent thermophysical properties are particularly considered; however, the techniques developed can be applied in other fields as well.A basic assumption in the design of HROMs is that the quantities that will be hyper-reduced are k compressible in a certain basis in the sense that these quantities have at most k non-zero significant entries when expressed in terms of that basis. To reach the computational speed required for a real-time application, k must be small. This work examines different strategies for addressing hyper-reduction of the nonlinear terms with the objective of obtaining k compressible signals with a notably small k. To improve performance and robustness, it is proposed that the different contributing terms to the residual are separately hyper-reduced. Additionally, the use of moving reference frames is proposed to simulate and hyper-reduce cases that contain moving heat sources. Two application examples are presented: the solidification of a cube in which no heat source is present and the welding of a tube in which the problem posed by a moving heat source is analysed. Fil: Cosimo, Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; Argentina Fil: Cardona, Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; Argentina Fil: Idelsohn, Sergio Rodolfo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; Argentina. Centro Int. de Metodos Numericos En Ingenierıa (cimne); España |
description |
The simulation of engineering problems is quite often a complex task that can be time consuming. In this context, the use of Hyper Reduced Order Models (HROMs) is a promising alternative for real-time simulations. In this work, we study the design of HROMs for non-linear problems with a moving source. Applications to nonlinear phase change problems with temperature dependent thermophysical properties are particularly considered; however, the techniques developed can be applied in other fields as well.A basic assumption in the design of HROMs is that the quantities that will be hyper-reduced are k compressible in a certain basis in the sense that these quantities have at most k non-zero significant entries when expressed in terms of that basis. To reach the computational speed required for a real-time application, k must be small. This work examines different strategies for addressing hyper-reduction of the nonlinear terms with the objective of obtaining k compressible signals with a notably small k. To improve performance and robustness, it is proposed that the different contributing terms to the residual are separately hyper-reduced. Additionally, the use of moving reference frames is proposed to simulate and hyper-reduce cases that contain moving heat sources. Two application examples are presented: the solidification of a cube in which no heat source is present and the welding of a tube in which the problem posed by a moving heat source is analysed. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-06 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/78605 Cosimo, Alejandro; Cardona, Alberto; Idelsohn, Sergio Rodolfo; Improving the k-Compressibility of Hyper Reduced Order Models with Moving Sources: Applications to Welding and Phase Change Problems; Elsevier Science Sa; Computer Methods in Applied Mechanics and Engineering; 274; 6-2014; 237-263 0045-7825 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/78605 |
identifier_str_mv |
Cosimo, Alejandro; Cardona, Alberto; Idelsohn, Sergio Rodolfo; Improving the k-Compressibility of Hyper Reduced Order Models with Moving Sources: Applications to Welding and Phase Change Problems; Elsevier Science Sa; Computer Methods in Applied Mechanics and Engineering; 274; 6-2014; 237-263 0045-7825 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.cma.2014.02.011 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science Sa |
publisher.none.fl_str_mv |
Elsevier Science Sa |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614268386803712 |
score |
13.070432 |