Improving the k-Compressibility of Hyper Reduced Order Models with Moving Sources: Applications to Welding and Phase Change Problems

Autores
Cosimo, Alejandro; Cardona, Alberto; Idelsohn, Sergio Rodolfo
Año de publicación
2014
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The simulation of engineering problems is quite often a complex task that can be time consuming. In this context, the use of Hyper Reduced Order Models (HROMs) is a promising alternative for real-time simulations. In this work, we study the design of HROMs for non-linear problems with a moving source. Applications to nonlinear phase change problems with temperature dependent thermophysical properties are particularly considered; however, the techniques developed can be applied in other fields as well.A basic assumption in the design of HROMs is that the quantities that will be hyper-reduced are k compressible in a certain basis in the sense that these quantities have at most k non-zero significant entries when expressed in terms of that basis. To reach the computational speed required for a real-time application, k must be small. This work examines different strategies for addressing hyper-reduction of the nonlinear terms with the objective of obtaining k compressible signals with a notably small k. To improve performance and robustness, it is proposed that the different contributing terms to the residual are separately hyper-reduced. Additionally, the use of moving reference frames is proposed to simulate and hyper-reduce cases that contain moving heat sources. Two application examples are presented: the solidification of a cube in which no heat source is present and the welding of a tube in which the problem posed by a moving heat source is analysed.
Fil: Cosimo, Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; Argentina
Fil: Cardona, Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; Argentina
Fil: Idelsohn, Sergio Rodolfo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; Argentina. Centro Int. de Metodos Numericos En Ingenierıa (cimne); España
Materia
Hyper Reduction
Moving Sources
Phase Change
Proper Orthogonal Decomposition
Reduced Order Models
Welding
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/78605

id CONICETDig_b45ef8161ff381cec0f585aecf0f3db3
oai_identifier_str oai:ri.conicet.gov.ar:11336/78605
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Improving the k-Compressibility of Hyper Reduced Order Models with Moving Sources: Applications to Welding and Phase Change ProblemsCosimo, AlejandroCardona, AlbertoIdelsohn, Sergio RodolfoHyper ReductionMoving SourcesPhase ChangeProper Orthogonal DecompositionReduced Order ModelsWeldinghttps://purl.org/becyt/ford/2.3https://purl.org/becyt/ford/2The simulation of engineering problems is quite often a complex task that can be time consuming. In this context, the use of Hyper Reduced Order Models (HROMs) is a promising alternative for real-time simulations. In this work, we study the design of HROMs for non-linear problems with a moving source. Applications to nonlinear phase change problems with temperature dependent thermophysical properties are particularly considered; however, the techniques developed can be applied in other fields as well.A basic assumption in the design of HROMs is that the quantities that will be hyper-reduced are k compressible in a certain basis in the sense that these quantities have at most k non-zero significant entries when expressed in terms of that basis. To reach the computational speed required for a real-time application, k must be small. This work examines different strategies for addressing hyper-reduction of the nonlinear terms with the objective of obtaining k compressible signals with a notably small k. To improve performance and robustness, it is proposed that the different contributing terms to the residual are separately hyper-reduced. Additionally, the use of moving reference frames is proposed to simulate and hyper-reduce cases that contain moving heat sources. Two application examples are presented: the solidification of a cube in which no heat source is present and the welding of a tube in which the problem posed by a moving heat source is analysed.Fil: Cosimo, Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; ArgentinaFil: Cardona, Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; ArgentinaFil: Idelsohn, Sergio Rodolfo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; Argentina. Centro Int. de Metodos Numericos En Ingenierıa (cimne); EspañaElsevier Science Sa2014-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/78605Cosimo, Alejandro; Cardona, Alberto; Idelsohn, Sergio Rodolfo; Improving the k-Compressibility of Hyper Reduced Order Models with Moving Sources: Applications to Welding and Phase Change Problems; Elsevier Science Sa; Computer Methods in Applied Mechanics and Engineering; 274; 6-2014; 237-2630045-7825CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.cma.2014.02.011info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:26:41Zoai:ri.conicet.gov.ar:11336/78605instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:26:41.853CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Improving the k-Compressibility of Hyper Reduced Order Models with Moving Sources: Applications to Welding and Phase Change Problems
title Improving the k-Compressibility of Hyper Reduced Order Models with Moving Sources: Applications to Welding and Phase Change Problems
spellingShingle Improving the k-Compressibility of Hyper Reduced Order Models with Moving Sources: Applications to Welding and Phase Change Problems
Cosimo, Alejandro
Hyper Reduction
Moving Sources
Phase Change
Proper Orthogonal Decomposition
Reduced Order Models
Welding
title_short Improving the k-Compressibility of Hyper Reduced Order Models with Moving Sources: Applications to Welding and Phase Change Problems
title_full Improving the k-Compressibility of Hyper Reduced Order Models with Moving Sources: Applications to Welding and Phase Change Problems
title_fullStr Improving the k-Compressibility of Hyper Reduced Order Models with Moving Sources: Applications to Welding and Phase Change Problems
title_full_unstemmed Improving the k-Compressibility of Hyper Reduced Order Models with Moving Sources: Applications to Welding and Phase Change Problems
title_sort Improving the k-Compressibility of Hyper Reduced Order Models with Moving Sources: Applications to Welding and Phase Change Problems
dc.creator.none.fl_str_mv Cosimo, Alejandro
Cardona, Alberto
Idelsohn, Sergio Rodolfo
author Cosimo, Alejandro
author_facet Cosimo, Alejandro
Cardona, Alberto
Idelsohn, Sergio Rodolfo
author_role author
author2 Cardona, Alberto
Idelsohn, Sergio Rodolfo
author2_role author
author
dc.subject.none.fl_str_mv Hyper Reduction
Moving Sources
Phase Change
Proper Orthogonal Decomposition
Reduced Order Models
Welding
topic Hyper Reduction
Moving Sources
Phase Change
Proper Orthogonal Decomposition
Reduced Order Models
Welding
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.3
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv The simulation of engineering problems is quite often a complex task that can be time consuming. In this context, the use of Hyper Reduced Order Models (HROMs) is a promising alternative for real-time simulations. In this work, we study the design of HROMs for non-linear problems with a moving source. Applications to nonlinear phase change problems with temperature dependent thermophysical properties are particularly considered; however, the techniques developed can be applied in other fields as well.A basic assumption in the design of HROMs is that the quantities that will be hyper-reduced are k compressible in a certain basis in the sense that these quantities have at most k non-zero significant entries when expressed in terms of that basis. To reach the computational speed required for a real-time application, k must be small. This work examines different strategies for addressing hyper-reduction of the nonlinear terms with the objective of obtaining k compressible signals with a notably small k. To improve performance and robustness, it is proposed that the different contributing terms to the residual are separately hyper-reduced. Additionally, the use of moving reference frames is proposed to simulate and hyper-reduce cases that contain moving heat sources. Two application examples are presented: the solidification of a cube in which no heat source is present and the welding of a tube in which the problem posed by a moving heat source is analysed.
Fil: Cosimo, Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; Argentina
Fil: Cardona, Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; Argentina
Fil: Idelsohn, Sergio Rodolfo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; Argentina. Centro Int. de Metodos Numericos En Ingenierıa (cimne); España
description The simulation of engineering problems is quite often a complex task that can be time consuming. In this context, the use of Hyper Reduced Order Models (HROMs) is a promising alternative for real-time simulations. In this work, we study the design of HROMs for non-linear problems with a moving source. Applications to nonlinear phase change problems with temperature dependent thermophysical properties are particularly considered; however, the techniques developed can be applied in other fields as well.A basic assumption in the design of HROMs is that the quantities that will be hyper-reduced are k compressible in a certain basis in the sense that these quantities have at most k non-zero significant entries when expressed in terms of that basis. To reach the computational speed required for a real-time application, k must be small. This work examines different strategies for addressing hyper-reduction of the nonlinear terms with the objective of obtaining k compressible signals with a notably small k. To improve performance and robustness, it is proposed that the different contributing terms to the residual are separately hyper-reduced. Additionally, the use of moving reference frames is proposed to simulate and hyper-reduce cases that contain moving heat sources. Two application examples are presented: the solidification of a cube in which no heat source is present and the welding of a tube in which the problem posed by a moving heat source is analysed.
publishDate 2014
dc.date.none.fl_str_mv 2014-06
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/78605
Cosimo, Alejandro; Cardona, Alberto; Idelsohn, Sergio Rodolfo; Improving the k-Compressibility of Hyper Reduced Order Models with Moving Sources: Applications to Welding and Phase Change Problems; Elsevier Science Sa; Computer Methods in Applied Mechanics and Engineering; 274; 6-2014; 237-263
0045-7825
CONICET Digital
CONICET
url http://hdl.handle.net/11336/78605
identifier_str_mv Cosimo, Alejandro; Cardona, Alberto; Idelsohn, Sergio Rodolfo; Improving the k-Compressibility of Hyper Reduced Order Models with Moving Sources: Applications to Welding and Phase Change Problems; Elsevier Science Sa; Computer Methods in Applied Mechanics and Engineering; 274; 6-2014; 237-263
0045-7825
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.cma.2014.02.011
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier Science Sa
publisher.none.fl_str_mv Elsevier Science Sa
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614268386803712
score 13.070432