Spatio-temporal variability in underwater light climate in a turbid river-floodplain system. Driving factors and estimation using Secchi disc
- Autores
- Mayora, Gisela Paola; Devercelli, Melina
- Año de publicación
- 2019
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The underwater light climate has important effects on primary producers. The aim of this research was to evaluate its variability in a turbid river-floodplain system. Photosynthetically active radiation (PAR) was measured in the Middle Paraná River during different hydrological phases to (a) analyse the photosynthetically active radiation attenuation coefficient (k) and euphotic depth (Zeu) as well as their associations with optically active components and (b) develop and evaluate indices and regression models based on Secchi disc (SD) measurements to estimate k and Zeu. Values of k were higher in the fluvial system than in the floodplain and during low-water stage than high-water stage. Particulate components controlled the light climate variability. Chromophoric dissolved organic matter and chlorophyll-a had significant effects during floods. The estimation of k and Zeu was sensitive to temporal but not to spatial variations. The highest prediction accuracy was observed when using specific non-linear regressions for each hydrological phase, especially for Zeu estimation (low stage: k = 1.76 × SD−0.80, Zeu = 2.62 × 1/SD−0.80; high stage: k = 2.04 × SD−0.53, Zeu = 2.26 × 1/SD−0.53). The indices k × SD and Zeu/SD were significantly different from those proposed for clear water environments. It is concluded that temporal variations should be considered when estimating k and Zeu in turbid river-floodplain systems because of the temporal heterogeneity in optically active components. Considering that ecological implication of the light climate depends on Zeu:depth ratio, we propose to estimate Zeu instead of k. Finally, indices proposed for clear water environments are not recommended to be applied to turbid environments.
Fil: Mayora, Gisela Paola. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto Nacional de Limnología. Universidad Nacional del Litoral. Instituto Nacional de Limnología; Argentina
Fil: Devercelli, Melina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto Nacional de Limnología. Universidad Nacional del Litoral. Instituto Nacional de Limnología; Argentina - Materia
-
CDOM
CHLOROPHYLL-A
FLOODPLAIN RIVER
HYDROLOGICAL REGIME
PAR
PARANÁ RIVER SYSTEM
SECCHI DISC
TURBIDITY - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/153753
Ver los metadatos del registro completo
id |
CONICETDig_b3ee4610cbe80c4ae43e5f7ebd1747c9 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/153753 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Spatio-temporal variability in underwater light climate in a turbid river-floodplain system. Driving factors and estimation using Secchi discMayora, Gisela PaolaDevercelli, MelinaCDOMCHLOROPHYLL-AFLOODPLAIN RIVERHYDROLOGICAL REGIMEPARPARANÁ RIVER SYSTEMSECCHI DISCTURBIDITYhttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1The underwater light climate has important effects on primary producers. The aim of this research was to evaluate its variability in a turbid river-floodplain system. Photosynthetically active radiation (PAR) was measured in the Middle Paraná River during different hydrological phases to (a) analyse the photosynthetically active radiation attenuation coefficient (k) and euphotic depth (Zeu) as well as their associations with optically active components and (b) develop and evaluate indices and regression models based on Secchi disc (SD) measurements to estimate k and Zeu. Values of k were higher in the fluvial system than in the floodplain and during low-water stage than high-water stage. Particulate components controlled the light climate variability. Chromophoric dissolved organic matter and chlorophyll-a had significant effects during floods. The estimation of k and Zeu was sensitive to temporal but not to spatial variations. The highest prediction accuracy was observed when using specific non-linear regressions for each hydrological phase, especially for Zeu estimation (low stage: k = 1.76 × SD−0.80, Zeu = 2.62 × 1/SD−0.80; high stage: k = 2.04 × SD−0.53, Zeu = 2.26 × 1/SD−0.53). The indices k × SD and Zeu/SD were significantly different from those proposed for clear water environments. It is concluded that temporal variations should be considered when estimating k and Zeu in turbid river-floodplain systems because of the temporal heterogeneity in optically active components. Considering that ecological implication of the light climate depends on Zeu:depth ratio, we propose to estimate Zeu instead of k. Finally, indices proposed for clear water environments are not recommended to be applied to turbid environments.Fil: Mayora, Gisela Paola. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto Nacional de Limnología. Universidad Nacional del Litoral. Instituto Nacional de Limnología; ArgentinaFil: Devercelli, Melina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto Nacional de Limnología. Universidad Nacional del Litoral. Instituto Nacional de Limnología; ArgentinaJohn Wiley & Sons Ltd2019-04-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/153753Mayora, Gisela Paola; Devercelli, Melina; Spatio-temporal variability in underwater light climate in a turbid river-floodplain system. Driving factors and estimation using Secchi disc; John Wiley & Sons Ltd; River Research And Applications; 35; 6; 11-4-2019; 566-5761535-1459CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/abs/10.1002/rra.3429info:eu-repo/semantics/altIdentifier/doi/10.1002/rra.3429info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:44:31Zoai:ri.conicet.gov.ar:11336/153753instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:44:31.325CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Spatio-temporal variability in underwater light climate in a turbid river-floodplain system. Driving factors and estimation using Secchi disc |
title |
Spatio-temporal variability in underwater light climate in a turbid river-floodplain system. Driving factors and estimation using Secchi disc |
spellingShingle |
Spatio-temporal variability in underwater light climate in a turbid river-floodplain system. Driving factors and estimation using Secchi disc Mayora, Gisela Paola CDOM CHLOROPHYLL-A FLOODPLAIN RIVER HYDROLOGICAL REGIME PAR PARANÁ RIVER SYSTEM SECCHI DISC TURBIDITY |
title_short |
Spatio-temporal variability in underwater light climate in a turbid river-floodplain system. Driving factors and estimation using Secchi disc |
title_full |
Spatio-temporal variability in underwater light climate in a turbid river-floodplain system. Driving factors and estimation using Secchi disc |
title_fullStr |
Spatio-temporal variability in underwater light climate in a turbid river-floodplain system. Driving factors and estimation using Secchi disc |
title_full_unstemmed |
Spatio-temporal variability in underwater light climate in a turbid river-floodplain system. Driving factors and estimation using Secchi disc |
title_sort |
Spatio-temporal variability in underwater light climate in a turbid river-floodplain system. Driving factors and estimation using Secchi disc |
dc.creator.none.fl_str_mv |
Mayora, Gisela Paola Devercelli, Melina |
author |
Mayora, Gisela Paola |
author_facet |
Mayora, Gisela Paola Devercelli, Melina |
author_role |
author |
author2 |
Devercelli, Melina |
author2_role |
author |
dc.subject.none.fl_str_mv |
CDOM CHLOROPHYLL-A FLOODPLAIN RIVER HYDROLOGICAL REGIME PAR PARANÁ RIVER SYSTEM SECCHI DISC TURBIDITY |
topic |
CDOM CHLOROPHYLL-A FLOODPLAIN RIVER HYDROLOGICAL REGIME PAR PARANÁ RIVER SYSTEM SECCHI DISC TURBIDITY |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.6 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The underwater light climate has important effects on primary producers. The aim of this research was to evaluate its variability in a turbid river-floodplain system. Photosynthetically active radiation (PAR) was measured in the Middle Paraná River during different hydrological phases to (a) analyse the photosynthetically active radiation attenuation coefficient (k) and euphotic depth (Zeu) as well as their associations with optically active components and (b) develop and evaluate indices and regression models based on Secchi disc (SD) measurements to estimate k and Zeu. Values of k were higher in the fluvial system than in the floodplain and during low-water stage than high-water stage. Particulate components controlled the light climate variability. Chromophoric dissolved organic matter and chlorophyll-a had significant effects during floods. The estimation of k and Zeu was sensitive to temporal but not to spatial variations. The highest prediction accuracy was observed when using specific non-linear regressions for each hydrological phase, especially for Zeu estimation (low stage: k = 1.76 × SD−0.80, Zeu = 2.62 × 1/SD−0.80; high stage: k = 2.04 × SD−0.53, Zeu = 2.26 × 1/SD−0.53). The indices k × SD and Zeu/SD were significantly different from those proposed for clear water environments. It is concluded that temporal variations should be considered when estimating k and Zeu in turbid river-floodplain systems because of the temporal heterogeneity in optically active components. Considering that ecological implication of the light climate depends on Zeu:depth ratio, we propose to estimate Zeu instead of k. Finally, indices proposed for clear water environments are not recommended to be applied to turbid environments. Fil: Mayora, Gisela Paola. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto Nacional de Limnología. Universidad Nacional del Litoral. Instituto Nacional de Limnología; Argentina Fil: Devercelli, Melina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto Nacional de Limnología. Universidad Nacional del Litoral. Instituto Nacional de Limnología; Argentina |
description |
The underwater light climate has important effects on primary producers. The aim of this research was to evaluate its variability in a turbid river-floodplain system. Photosynthetically active radiation (PAR) was measured in the Middle Paraná River during different hydrological phases to (a) analyse the photosynthetically active radiation attenuation coefficient (k) and euphotic depth (Zeu) as well as their associations with optically active components and (b) develop and evaluate indices and regression models based on Secchi disc (SD) measurements to estimate k and Zeu. Values of k were higher in the fluvial system than in the floodplain and during low-water stage than high-water stage. Particulate components controlled the light climate variability. Chromophoric dissolved organic matter and chlorophyll-a had significant effects during floods. The estimation of k and Zeu was sensitive to temporal but not to spatial variations. The highest prediction accuracy was observed when using specific non-linear regressions for each hydrological phase, especially for Zeu estimation (low stage: k = 1.76 × SD−0.80, Zeu = 2.62 × 1/SD−0.80; high stage: k = 2.04 × SD−0.53, Zeu = 2.26 × 1/SD−0.53). The indices k × SD and Zeu/SD were significantly different from those proposed for clear water environments. It is concluded that temporal variations should be considered when estimating k and Zeu in turbid river-floodplain systems because of the temporal heterogeneity in optically active components. Considering that ecological implication of the light climate depends on Zeu:depth ratio, we propose to estimate Zeu instead of k. Finally, indices proposed for clear water environments are not recommended to be applied to turbid environments. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-04-11 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/153753 Mayora, Gisela Paola; Devercelli, Melina; Spatio-temporal variability in underwater light climate in a turbid river-floodplain system. Driving factors and estimation using Secchi disc; John Wiley & Sons Ltd; River Research And Applications; 35; 6; 11-4-2019; 566-576 1535-1459 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/153753 |
identifier_str_mv |
Mayora, Gisela Paola; Devercelli, Melina; Spatio-temporal variability in underwater light climate in a turbid river-floodplain system. Driving factors and estimation using Secchi disc; John Wiley & Sons Ltd; River Research And Applications; 35; 6; 11-4-2019; 566-576 1535-1459 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/abs/10.1002/rra.3429 info:eu-repo/semantics/altIdentifier/doi/10.1002/rra.3429 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
John Wiley & Sons Ltd |
publisher.none.fl_str_mv |
John Wiley & Sons Ltd |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842268672089915392 |
score |
13.13397 |