Feasibility analysis towards the simulation of hysteresis with spin-lattice dynamics

Autores
dos Santos, G.; Romá, Federico José; Tranchida, J.; Castedo, S.; Cugliandolo, L. F.; Bringa, Eduardo Marcial
Año de publicación
2023
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We use spin-lattice dynamics simulations to study the possibility of modeling the magnetic hysteresis behavior of a ferromagnetic material. The temporal evolution of the magnetic and mechanical degrees of freedom is obtained through a set of two coupled Langevin equations. Hysteresis loops are calculated for different angles between the external field and the magnetocrystalline anisotropy axes. The influence of several relevant parameters is studied, including the field frequency, magnetic damping, magnetic anisotropy (magnitude and type), magnetic exchange, and system size. The role played by a moving lattice is also discussed. For a perfect bulk ferromagnetic system we find that, at low temperatures, the exchange and lattice dynamics barely affect the loops, while the field frequency and magnetic damping have a large effect on it. The influence of the anisotropy magnitude and symmetry are found to follow the expected behavior. We show that a careful choice of simulation parameters allows for an excellent agreement between the spin-lattice dynamics measurements and the paradigmatic Stoner-Wohlfarth model. Furthermore, we extend this analysis to intermediate and high temperatures for the perfect bulk system and for spherical nanoparticles, with and without defects, reaching values close to the Curie temperature. In this temperature range, we find that lattice dynamics has a greater role on the magnetic behavior, especially in the evolution of the defective samples. This study opens the possibility for more accurate inclusion of lattice defects and thermal effects in hysteresis simulations.
Fil: dos Santos, G.. Universidad de Mendoza; Argentina
Fil: Romá, Federico José. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; Argentina. Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Departamento de Física; Argentina
Fil: Tranchida, J.. No especifíca;
Fil: Castedo, S.. No especifíca;
Fil: Cugliandolo, L. F.. Université Pierre et Marie Curie. Laboratoire de Physique Théorique et Hautes Energies; Francia
Fil: Bringa, Eduardo Marcial. Universidad de Mendoza; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Materia
MAGNETISM
SIMULATIONS
SPIN-LATTICE-MODELS
NANOPARTICLES
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/227483

id CONICETDig_b3cb274db1868d73d5cc911b8687d72d
oai_identifier_str oai:ri.conicet.gov.ar:11336/227483
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Feasibility analysis towards the simulation of hysteresis with spin-lattice dynamicsdos Santos, G.Romá, Federico JoséTranchida, J.Castedo, S.Cugliandolo, L. F.Bringa, Eduardo MarcialMAGNETISMSIMULATIONSSPIN-LATTICE-MODELSNANOPARTICLEShttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We use spin-lattice dynamics simulations to study the possibility of modeling the magnetic hysteresis behavior of a ferromagnetic material. The temporal evolution of the magnetic and mechanical degrees of freedom is obtained through a set of two coupled Langevin equations. Hysteresis loops are calculated for different angles between the external field and the magnetocrystalline anisotropy axes. The influence of several relevant parameters is studied, including the field frequency, magnetic damping, magnetic anisotropy (magnitude and type), magnetic exchange, and system size. The role played by a moving lattice is also discussed. For a perfect bulk ferromagnetic system we find that, at low temperatures, the exchange and lattice dynamics barely affect the loops, while the field frequency and magnetic damping have a large effect on it. The influence of the anisotropy magnitude and symmetry are found to follow the expected behavior. We show that a careful choice of simulation parameters allows for an excellent agreement between the spin-lattice dynamics measurements and the paradigmatic Stoner-Wohlfarth model. Furthermore, we extend this analysis to intermediate and high temperatures for the perfect bulk system and for spherical nanoparticles, with and without defects, reaching values close to the Curie temperature. In this temperature range, we find that lattice dynamics has a greater role on the magnetic behavior, especially in the evolution of the defective samples. This study opens the possibility for more accurate inclusion of lattice defects and thermal effects in hysteresis simulations.Fil: dos Santos, G.. Universidad de Mendoza; ArgentinaFil: Romá, Federico José. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; Argentina. Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Departamento de Física; ArgentinaFil: Tranchida, J.. No especifíca;Fil: Castedo, S.. No especifíca;Fil: Cugliandolo, L. F.. Université Pierre et Marie Curie. Laboratoire de Physique Théorique et Hautes Energies; FranciaFil: Bringa, Eduardo Marcial. Universidad de Mendoza; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaAmerican Physical Society2023-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/227483dos Santos, G.; Romá, Federico José; Tranchida, J.; Castedo, S.; Cugliandolo, L. F.; et al.; Feasibility analysis towards the simulation of hysteresis with spin-lattice dynamics; American Physical Society; Physical Review B; 108; 13; 10-2023; 134417-1344302469-99502469-9969CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://link.aps.org/doi/10.1103/PhysRevB.108.134417info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevB.108.134417info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:52:22Zoai:ri.conicet.gov.ar:11336/227483instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:52:22.265CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Feasibility analysis towards the simulation of hysteresis with spin-lattice dynamics
title Feasibility analysis towards the simulation of hysteresis with spin-lattice dynamics
spellingShingle Feasibility analysis towards the simulation of hysteresis with spin-lattice dynamics
dos Santos, G.
MAGNETISM
SIMULATIONS
SPIN-LATTICE-MODELS
NANOPARTICLES
title_short Feasibility analysis towards the simulation of hysteresis with spin-lattice dynamics
title_full Feasibility analysis towards the simulation of hysteresis with spin-lattice dynamics
title_fullStr Feasibility analysis towards the simulation of hysteresis with spin-lattice dynamics
title_full_unstemmed Feasibility analysis towards the simulation of hysteresis with spin-lattice dynamics
title_sort Feasibility analysis towards the simulation of hysteresis with spin-lattice dynamics
dc.creator.none.fl_str_mv dos Santos, G.
Romá, Federico José
Tranchida, J.
Castedo, S.
Cugliandolo, L. F.
Bringa, Eduardo Marcial
author dos Santos, G.
author_facet dos Santos, G.
Romá, Federico José
Tranchida, J.
Castedo, S.
Cugliandolo, L. F.
Bringa, Eduardo Marcial
author_role author
author2 Romá, Federico José
Tranchida, J.
Castedo, S.
Cugliandolo, L. F.
Bringa, Eduardo Marcial
author2_role author
author
author
author
author
dc.subject.none.fl_str_mv MAGNETISM
SIMULATIONS
SPIN-LATTICE-MODELS
NANOPARTICLES
topic MAGNETISM
SIMULATIONS
SPIN-LATTICE-MODELS
NANOPARTICLES
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We use spin-lattice dynamics simulations to study the possibility of modeling the magnetic hysteresis behavior of a ferromagnetic material. The temporal evolution of the magnetic and mechanical degrees of freedom is obtained through a set of two coupled Langevin equations. Hysteresis loops are calculated for different angles between the external field and the magnetocrystalline anisotropy axes. The influence of several relevant parameters is studied, including the field frequency, magnetic damping, magnetic anisotropy (magnitude and type), magnetic exchange, and system size. The role played by a moving lattice is also discussed. For a perfect bulk ferromagnetic system we find that, at low temperatures, the exchange and lattice dynamics barely affect the loops, while the field frequency and magnetic damping have a large effect on it. The influence of the anisotropy magnitude and symmetry are found to follow the expected behavior. We show that a careful choice of simulation parameters allows for an excellent agreement between the spin-lattice dynamics measurements and the paradigmatic Stoner-Wohlfarth model. Furthermore, we extend this analysis to intermediate and high temperatures for the perfect bulk system and for spherical nanoparticles, with and without defects, reaching values close to the Curie temperature. In this temperature range, we find that lattice dynamics has a greater role on the magnetic behavior, especially in the evolution of the defective samples. This study opens the possibility for more accurate inclusion of lattice defects and thermal effects in hysteresis simulations.
Fil: dos Santos, G.. Universidad de Mendoza; Argentina
Fil: Romá, Federico José. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; Argentina. Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Departamento de Física; Argentina
Fil: Tranchida, J.. No especifíca;
Fil: Castedo, S.. No especifíca;
Fil: Cugliandolo, L. F.. Université Pierre et Marie Curie. Laboratoire de Physique Théorique et Hautes Energies; Francia
Fil: Bringa, Eduardo Marcial. Universidad de Mendoza; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
description We use spin-lattice dynamics simulations to study the possibility of modeling the magnetic hysteresis behavior of a ferromagnetic material. The temporal evolution of the magnetic and mechanical degrees of freedom is obtained through a set of two coupled Langevin equations. Hysteresis loops are calculated for different angles between the external field and the magnetocrystalline anisotropy axes. The influence of several relevant parameters is studied, including the field frequency, magnetic damping, magnetic anisotropy (magnitude and type), magnetic exchange, and system size. The role played by a moving lattice is also discussed. For a perfect bulk ferromagnetic system we find that, at low temperatures, the exchange and lattice dynamics barely affect the loops, while the field frequency and magnetic damping have a large effect on it. The influence of the anisotropy magnitude and symmetry are found to follow the expected behavior. We show that a careful choice of simulation parameters allows for an excellent agreement between the spin-lattice dynamics measurements and the paradigmatic Stoner-Wohlfarth model. Furthermore, we extend this analysis to intermediate and high temperatures for the perfect bulk system and for spherical nanoparticles, with and without defects, reaching values close to the Curie temperature. In this temperature range, we find that lattice dynamics has a greater role on the magnetic behavior, especially in the evolution of the defective samples. This study opens the possibility for more accurate inclusion of lattice defects and thermal effects in hysteresis simulations.
publishDate 2023
dc.date.none.fl_str_mv 2023-10
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/227483
dos Santos, G.; Romá, Federico José; Tranchida, J.; Castedo, S.; Cugliandolo, L. F.; et al.; Feasibility analysis towards the simulation of hysteresis with spin-lattice dynamics; American Physical Society; Physical Review B; 108; 13; 10-2023; 134417-134430
2469-9950
2469-9969
CONICET Digital
CONICET
url http://hdl.handle.net/11336/227483
identifier_str_mv dos Santos, G.; Romá, Federico José; Tranchida, J.; Castedo, S.; Cugliandolo, L. F.; et al.; Feasibility analysis towards the simulation of hysteresis with spin-lattice dynamics; American Physical Society; Physical Review B; 108; 13; 10-2023; 134417-134430
2469-9950
2469-9969
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://link.aps.org/doi/10.1103/PhysRevB.108.134417
info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevB.108.134417
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Physical Society
publisher.none.fl_str_mv American Physical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613606385123328
score 13.070432