Feasibility analysis towards the simulation of hysteresis with spin-lattice dynamics
- Autores
- dos Santos, G.; Romá, Federico José; Tranchida, J.; Castedo, S.; Cugliandolo, L. F.; Bringa, Eduardo Marcial
- Año de publicación
- 2023
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We use spin-lattice dynamics simulations to study the possibility of modeling the magnetic hysteresis behavior of a ferromagnetic material. The temporal evolution of the magnetic and mechanical degrees of freedom is obtained through a set of two coupled Langevin equations. Hysteresis loops are calculated for different angles between the external field and the magnetocrystalline anisotropy axes. The influence of several relevant parameters is studied, including the field frequency, magnetic damping, magnetic anisotropy (magnitude and type), magnetic exchange, and system size. The role played by a moving lattice is also discussed. For a perfect bulk ferromagnetic system we find that, at low temperatures, the exchange and lattice dynamics barely affect the loops, while the field frequency and magnetic damping have a large effect on it. The influence of the anisotropy magnitude and symmetry are found to follow the expected behavior. We show that a careful choice of simulation parameters allows for an excellent agreement between the spin-lattice dynamics measurements and the paradigmatic Stoner-Wohlfarth model. Furthermore, we extend this analysis to intermediate and high temperatures for the perfect bulk system and for spherical nanoparticles, with and without defects, reaching values close to the Curie temperature. In this temperature range, we find that lattice dynamics has a greater role on the magnetic behavior, especially in the evolution of the defective samples. This study opens the possibility for more accurate inclusion of lattice defects and thermal effects in hysteresis simulations.
Fil: dos Santos, G.. Universidad de Mendoza; Argentina
Fil: Romá, Federico José. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; Argentina. Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Departamento de Física; Argentina
Fil: Tranchida, J.. No especifíca;
Fil: Castedo, S.. No especifíca;
Fil: Cugliandolo, L. F.. Université Pierre et Marie Curie. Laboratoire de Physique Théorique et Hautes Energies; Francia
Fil: Bringa, Eduardo Marcial. Universidad de Mendoza; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
MAGNETISM
SIMULATIONS
SPIN-LATTICE-MODELS
NANOPARTICLES - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/227483
Ver los metadatos del registro completo
id |
CONICETDig_b3cb274db1868d73d5cc911b8687d72d |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/227483 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Feasibility analysis towards the simulation of hysteresis with spin-lattice dynamicsdos Santos, G.Romá, Federico JoséTranchida, J.Castedo, S.Cugliandolo, L. F.Bringa, Eduardo MarcialMAGNETISMSIMULATIONSSPIN-LATTICE-MODELSNANOPARTICLEShttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We use spin-lattice dynamics simulations to study the possibility of modeling the magnetic hysteresis behavior of a ferromagnetic material. The temporal evolution of the magnetic and mechanical degrees of freedom is obtained through a set of two coupled Langevin equations. Hysteresis loops are calculated for different angles between the external field and the magnetocrystalline anisotropy axes. The influence of several relevant parameters is studied, including the field frequency, magnetic damping, magnetic anisotropy (magnitude and type), magnetic exchange, and system size. The role played by a moving lattice is also discussed. For a perfect bulk ferromagnetic system we find that, at low temperatures, the exchange and lattice dynamics barely affect the loops, while the field frequency and magnetic damping have a large effect on it. The influence of the anisotropy magnitude and symmetry are found to follow the expected behavior. We show that a careful choice of simulation parameters allows for an excellent agreement between the spin-lattice dynamics measurements and the paradigmatic Stoner-Wohlfarth model. Furthermore, we extend this analysis to intermediate and high temperatures for the perfect bulk system and for spherical nanoparticles, with and without defects, reaching values close to the Curie temperature. In this temperature range, we find that lattice dynamics has a greater role on the magnetic behavior, especially in the evolution of the defective samples. This study opens the possibility for more accurate inclusion of lattice defects and thermal effects in hysteresis simulations.Fil: dos Santos, G.. Universidad de Mendoza; ArgentinaFil: Romá, Federico José. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; Argentina. Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Departamento de Física; ArgentinaFil: Tranchida, J.. No especifíca;Fil: Castedo, S.. No especifíca;Fil: Cugliandolo, L. F.. Université Pierre et Marie Curie. Laboratoire de Physique Théorique et Hautes Energies; FranciaFil: Bringa, Eduardo Marcial. Universidad de Mendoza; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaAmerican Physical Society2023-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/227483dos Santos, G.; Romá, Federico José; Tranchida, J.; Castedo, S.; Cugliandolo, L. F.; et al.; Feasibility analysis towards the simulation of hysteresis with spin-lattice dynamics; American Physical Society; Physical Review B; 108; 13; 10-2023; 134417-1344302469-99502469-9969CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://link.aps.org/doi/10.1103/PhysRevB.108.134417info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevB.108.134417info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:52:22Zoai:ri.conicet.gov.ar:11336/227483instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:52:22.265CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Feasibility analysis towards the simulation of hysteresis with spin-lattice dynamics |
title |
Feasibility analysis towards the simulation of hysteresis with spin-lattice dynamics |
spellingShingle |
Feasibility analysis towards the simulation of hysteresis with spin-lattice dynamics dos Santos, G. MAGNETISM SIMULATIONS SPIN-LATTICE-MODELS NANOPARTICLES |
title_short |
Feasibility analysis towards the simulation of hysteresis with spin-lattice dynamics |
title_full |
Feasibility analysis towards the simulation of hysteresis with spin-lattice dynamics |
title_fullStr |
Feasibility analysis towards the simulation of hysteresis with spin-lattice dynamics |
title_full_unstemmed |
Feasibility analysis towards the simulation of hysteresis with spin-lattice dynamics |
title_sort |
Feasibility analysis towards the simulation of hysteresis with spin-lattice dynamics |
dc.creator.none.fl_str_mv |
dos Santos, G. Romá, Federico José Tranchida, J. Castedo, S. Cugliandolo, L. F. Bringa, Eduardo Marcial |
author |
dos Santos, G. |
author_facet |
dos Santos, G. Romá, Federico José Tranchida, J. Castedo, S. Cugliandolo, L. F. Bringa, Eduardo Marcial |
author_role |
author |
author2 |
Romá, Federico José Tranchida, J. Castedo, S. Cugliandolo, L. F. Bringa, Eduardo Marcial |
author2_role |
author author author author author |
dc.subject.none.fl_str_mv |
MAGNETISM SIMULATIONS SPIN-LATTICE-MODELS NANOPARTICLES |
topic |
MAGNETISM SIMULATIONS SPIN-LATTICE-MODELS NANOPARTICLES |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We use spin-lattice dynamics simulations to study the possibility of modeling the magnetic hysteresis behavior of a ferromagnetic material. The temporal evolution of the magnetic and mechanical degrees of freedom is obtained through a set of two coupled Langevin equations. Hysteresis loops are calculated for different angles between the external field and the magnetocrystalline anisotropy axes. The influence of several relevant parameters is studied, including the field frequency, magnetic damping, magnetic anisotropy (magnitude and type), magnetic exchange, and system size. The role played by a moving lattice is also discussed. For a perfect bulk ferromagnetic system we find that, at low temperatures, the exchange and lattice dynamics barely affect the loops, while the field frequency and magnetic damping have a large effect on it. The influence of the anisotropy magnitude and symmetry are found to follow the expected behavior. We show that a careful choice of simulation parameters allows for an excellent agreement between the spin-lattice dynamics measurements and the paradigmatic Stoner-Wohlfarth model. Furthermore, we extend this analysis to intermediate and high temperatures for the perfect bulk system and for spherical nanoparticles, with and without defects, reaching values close to the Curie temperature. In this temperature range, we find that lattice dynamics has a greater role on the magnetic behavior, especially in the evolution of the defective samples. This study opens the possibility for more accurate inclusion of lattice defects and thermal effects in hysteresis simulations. Fil: dos Santos, G.. Universidad de Mendoza; Argentina Fil: Romá, Federico José. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; Argentina. Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Departamento de Física; Argentina Fil: Tranchida, J.. No especifíca; Fil: Castedo, S.. No especifíca; Fil: Cugliandolo, L. F.. Université Pierre et Marie Curie. Laboratoire de Physique Théorique et Hautes Energies; Francia Fil: Bringa, Eduardo Marcial. Universidad de Mendoza; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
description |
We use spin-lattice dynamics simulations to study the possibility of modeling the magnetic hysteresis behavior of a ferromagnetic material. The temporal evolution of the magnetic and mechanical degrees of freedom is obtained through a set of two coupled Langevin equations. Hysteresis loops are calculated for different angles between the external field and the magnetocrystalline anisotropy axes. The influence of several relevant parameters is studied, including the field frequency, magnetic damping, magnetic anisotropy (magnitude and type), magnetic exchange, and system size. The role played by a moving lattice is also discussed. For a perfect bulk ferromagnetic system we find that, at low temperatures, the exchange and lattice dynamics barely affect the loops, while the field frequency and magnetic damping have a large effect on it. The influence of the anisotropy magnitude and symmetry are found to follow the expected behavior. We show that a careful choice of simulation parameters allows for an excellent agreement between the spin-lattice dynamics measurements and the paradigmatic Stoner-Wohlfarth model. Furthermore, we extend this analysis to intermediate and high temperatures for the perfect bulk system and for spherical nanoparticles, with and without defects, reaching values close to the Curie temperature. In this temperature range, we find that lattice dynamics has a greater role on the magnetic behavior, especially in the evolution of the defective samples. This study opens the possibility for more accurate inclusion of lattice defects and thermal effects in hysteresis simulations. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/227483 dos Santos, G.; Romá, Federico José; Tranchida, J.; Castedo, S.; Cugliandolo, L. F.; et al.; Feasibility analysis towards the simulation of hysteresis with spin-lattice dynamics; American Physical Society; Physical Review B; 108; 13; 10-2023; 134417-134430 2469-9950 2469-9969 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/227483 |
identifier_str_mv |
dos Santos, G.; Romá, Federico José; Tranchida, J.; Castedo, S.; Cugliandolo, L. F.; et al.; Feasibility analysis towards the simulation of hysteresis with spin-lattice dynamics; American Physical Society; Physical Review B; 108; 13; 10-2023; 134417-134430 2469-9950 2469-9969 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://link.aps.org/doi/10.1103/PhysRevB.108.134417 info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevB.108.134417 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Physical Society |
publisher.none.fl_str_mv |
American Physical Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613606385123328 |
score |
13.070432 |