The Cerro Aguas Calientes caldera, NW Argentina: An example of a tectonically controlled, polygenetic collapse caldera, and its regional significance

Autores
Petrinovic, Ivan Alejandro; Martí, J.; Aguirre Díaz, G. J.; Guzman, Silvina Raquel; Geyer, A.; Salado Paz, Natalia
Año de publicación
2010
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Polygenetic, silicic collapse calderas are common in the central Andes. Here we describe in detail the Cerro Aguas Calientes caldera in NW Argentina, which comprises two caldera-forming episodes that occurred at 17.15. Ma and 10.3. Ma. We analyse the significance of its structural setting, composition, size and the subsidence style of both caldera episodes. We find that the caldera eruptions had a tectonic trigger. In both cases, an homogeneous dacitic crystal-rich (>60. vol.% of crystals) reservoir of batholithic size became unstable due to the effect of increasing regional transpression, which favoured local dilation through minor strike-slip faults from which ring faults nucleated and permitted caldera collapse.Both calderas are similar in shape, location and products. The 17.15Ma caldera has an elliptical shape (17×14km) elongated in a N30° trend; both intracaldera and extracaldera ignimbrites covered an area of around 620km2 with a minimum volume estimate of 140km3 (DRE). The 10.3Ma episode generated another elliptical caldera (19×14km), with the same orientation as the previous one, from which intracaldera and outflow ignimbrites covered a total area of about 1700km2, representing a minimum eruption volume of 350km3(DRE).In this paper we discuss the significance of the Cerro Aguas Calientes caldera in comparison with other well known examples from the central Andes in terms of tectonic setting, eruption mechanisms, and volumes of related ignimbrites. We suggest that our kinematic model is a common volcano-tectonic scenario during the Cenozoic in the Puna and Altiplano, which may be applied to explain the origin of other large calderas in the same region. © 2010 Elsevier B.V.
Fil: Petrinovic, Ivan Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigaciones en Ciencias de la Tierra. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Centro de Investigaciones en Ciencias de la Tierra; Argentina
Fil: Martí, J.. Consejo Superior de Investigaciones Científicas. Instituto de Ciencias de la Tierra Jaume Almera; España
Fil: Aguirre Díaz, G. J.. Universidad Nacional Autónoma de México; México
Fil: Guzman, Silvina Raquel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Bio y Geociencias del NOA. Universidad Nacional de Salta. Facultad de Ciencias Naturales. Museo de Ciencias Naturales. Instituto de Bio y Geociencias del NOA; Argentina
Fil: Geyer, A.. CIMNE International Center for Numerical Methods in Engineering; España
Fil: Salado Paz, Natalia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Bio y Geociencias del NOA. Universidad Nacional de Salta. Facultad de Ciencias Naturales. Museo de Ciencias Naturales. Instituto de Bio y Geociencias del NOA; Argentina
Materia
Central Andes
Collapse Caldera
Ignimbrites
Puna
Transpression
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/52025

id CONICETDig_b3bbb6641b5a031a382d2ddbd3ec39f5
oai_identifier_str oai:ri.conicet.gov.ar:11336/52025
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling The Cerro Aguas Calientes caldera, NW Argentina: An example of a tectonically controlled, polygenetic collapse caldera, and its regional significancePetrinovic, Ivan AlejandroMartí, J.Aguirre Díaz, G. J.Guzman, Silvina RaquelGeyer, A.Salado Paz, NataliaCentral AndesCollapse CalderaIgnimbritesPunaTranspressionhttps://purl.org/becyt/ford/1.5https://purl.org/becyt/ford/1Polygenetic, silicic collapse calderas are common in the central Andes. Here we describe in detail the Cerro Aguas Calientes caldera in NW Argentina, which comprises two caldera-forming episodes that occurred at 17.15. Ma and 10.3. Ma. We analyse the significance of its structural setting, composition, size and the subsidence style of both caldera episodes. We find that the caldera eruptions had a tectonic trigger. In both cases, an homogeneous dacitic crystal-rich (>60. vol.% of crystals) reservoir of batholithic size became unstable due to the effect of increasing regional transpression, which favoured local dilation through minor strike-slip faults from which ring faults nucleated and permitted caldera collapse.Both calderas are similar in shape, location and products. The 17.15Ma caldera has an elliptical shape (17×14km) elongated in a N30° trend; both intracaldera and extracaldera ignimbrites covered an area of around 620km2 with a minimum volume estimate of 140km3 (DRE). The 10.3Ma episode generated another elliptical caldera (19×14km), with the same orientation as the previous one, from which intracaldera and outflow ignimbrites covered a total area of about 1700km2, representing a minimum eruption volume of 350km3(DRE).In this paper we discuss the significance of the Cerro Aguas Calientes caldera in comparison with other well known examples from the central Andes in terms of tectonic setting, eruption mechanisms, and volumes of related ignimbrites. We suggest that our kinematic model is a common volcano-tectonic scenario during the Cenozoic in the Puna and Altiplano, which may be applied to explain the origin of other large calderas in the same region. © 2010 Elsevier B.V.Fil: Petrinovic, Ivan Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigaciones en Ciencias de la Tierra. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Centro de Investigaciones en Ciencias de la Tierra; ArgentinaFil: Martí, J.. Consejo Superior de Investigaciones Científicas. Instituto de Ciencias de la Tierra Jaume Almera; EspañaFil: Aguirre Díaz, G. J.. Universidad Nacional Autónoma de México; MéxicoFil: Guzman, Silvina Raquel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Bio y Geociencias del NOA. Universidad Nacional de Salta. Facultad de Ciencias Naturales. Museo de Ciencias Naturales. Instituto de Bio y Geociencias del NOA; ArgentinaFil: Geyer, A.. CIMNE International Center for Numerical Methods in Engineering; EspañaFil: Salado Paz, Natalia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Bio y Geociencias del NOA. Universidad Nacional de Salta. Facultad de Ciencias Naturales. Museo de Ciencias Naturales. Instituto de Bio y Geociencias del NOA; ArgentinaElsevier Science2010-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/52025Petrinovic, Ivan Alejandro; Martí, J.; Aguirre Díaz, G. J.; Guzman, Silvina Raquel; Geyer, A.; et al.; The Cerro Aguas Calientes caldera, NW Argentina: An example of a tectonically controlled, polygenetic collapse caldera, and its regional significance; Elsevier Science; Journal of Volcanology and Geothermal Research; 194; 1-3; 7-2010; 15-260377-0273CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.jvolgeores.2010.04.012info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0377027310001307info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:11:56Zoai:ri.conicet.gov.ar:11336/52025instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:11:57.174CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv The Cerro Aguas Calientes caldera, NW Argentina: An example of a tectonically controlled, polygenetic collapse caldera, and its regional significance
title The Cerro Aguas Calientes caldera, NW Argentina: An example of a tectonically controlled, polygenetic collapse caldera, and its regional significance
spellingShingle The Cerro Aguas Calientes caldera, NW Argentina: An example of a tectonically controlled, polygenetic collapse caldera, and its regional significance
Petrinovic, Ivan Alejandro
Central Andes
Collapse Caldera
Ignimbrites
Puna
Transpression
title_short The Cerro Aguas Calientes caldera, NW Argentina: An example of a tectonically controlled, polygenetic collapse caldera, and its regional significance
title_full The Cerro Aguas Calientes caldera, NW Argentina: An example of a tectonically controlled, polygenetic collapse caldera, and its regional significance
title_fullStr The Cerro Aguas Calientes caldera, NW Argentina: An example of a tectonically controlled, polygenetic collapse caldera, and its regional significance
title_full_unstemmed The Cerro Aguas Calientes caldera, NW Argentina: An example of a tectonically controlled, polygenetic collapse caldera, and its regional significance
title_sort The Cerro Aguas Calientes caldera, NW Argentina: An example of a tectonically controlled, polygenetic collapse caldera, and its regional significance
dc.creator.none.fl_str_mv Petrinovic, Ivan Alejandro
Martí, J.
Aguirre Díaz, G. J.
Guzman, Silvina Raquel
Geyer, A.
Salado Paz, Natalia
author Petrinovic, Ivan Alejandro
author_facet Petrinovic, Ivan Alejandro
Martí, J.
Aguirre Díaz, G. J.
Guzman, Silvina Raquel
Geyer, A.
Salado Paz, Natalia
author_role author
author2 Martí, J.
Aguirre Díaz, G. J.
Guzman, Silvina Raquel
Geyer, A.
Salado Paz, Natalia
author2_role author
author
author
author
author
dc.subject.none.fl_str_mv Central Andes
Collapse Caldera
Ignimbrites
Puna
Transpression
topic Central Andes
Collapse Caldera
Ignimbrites
Puna
Transpression
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.5
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Polygenetic, silicic collapse calderas are common in the central Andes. Here we describe in detail the Cerro Aguas Calientes caldera in NW Argentina, which comprises two caldera-forming episodes that occurred at 17.15. Ma and 10.3. Ma. We analyse the significance of its structural setting, composition, size and the subsidence style of both caldera episodes. We find that the caldera eruptions had a tectonic trigger. In both cases, an homogeneous dacitic crystal-rich (>60. vol.% of crystals) reservoir of batholithic size became unstable due to the effect of increasing regional transpression, which favoured local dilation through minor strike-slip faults from which ring faults nucleated and permitted caldera collapse.Both calderas are similar in shape, location and products. The 17.15Ma caldera has an elliptical shape (17×14km) elongated in a N30° trend; both intracaldera and extracaldera ignimbrites covered an area of around 620km2 with a minimum volume estimate of 140km3 (DRE). The 10.3Ma episode generated another elliptical caldera (19×14km), with the same orientation as the previous one, from which intracaldera and outflow ignimbrites covered a total area of about 1700km2, representing a minimum eruption volume of 350km3(DRE).In this paper we discuss the significance of the Cerro Aguas Calientes caldera in comparison with other well known examples from the central Andes in terms of tectonic setting, eruption mechanisms, and volumes of related ignimbrites. We suggest that our kinematic model is a common volcano-tectonic scenario during the Cenozoic in the Puna and Altiplano, which may be applied to explain the origin of other large calderas in the same region. © 2010 Elsevier B.V.
Fil: Petrinovic, Ivan Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigaciones en Ciencias de la Tierra. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Centro de Investigaciones en Ciencias de la Tierra; Argentina
Fil: Martí, J.. Consejo Superior de Investigaciones Científicas. Instituto de Ciencias de la Tierra Jaume Almera; España
Fil: Aguirre Díaz, G. J.. Universidad Nacional Autónoma de México; México
Fil: Guzman, Silvina Raquel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Bio y Geociencias del NOA. Universidad Nacional de Salta. Facultad de Ciencias Naturales. Museo de Ciencias Naturales. Instituto de Bio y Geociencias del NOA; Argentina
Fil: Geyer, A.. CIMNE International Center for Numerical Methods in Engineering; España
Fil: Salado Paz, Natalia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Bio y Geociencias del NOA. Universidad Nacional de Salta. Facultad de Ciencias Naturales. Museo de Ciencias Naturales. Instituto de Bio y Geociencias del NOA; Argentina
description Polygenetic, silicic collapse calderas are common in the central Andes. Here we describe in detail the Cerro Aguas Calientes caldera in NW Argentina, which comprises two caldera-forming episodes that occurred at 17.15. Ma and 10.3. Ma. We analyse the significance of its structural setting, composition, size and the subsidence style of both caldera episodes. We find that the caldera eruptions had a tectonic trigger. In both cases, an homogeneous dacitic crystal-rich (>60. vol.% of crystals) reservoir of batholithic size became unstable due to the effect of increasing regional transpression, which favoured local dilation through minor strike-slip faults from which ring faults nucleated and permitted caldera collapse.Both calderas are similar in shape, location and products. The 17.15Ma caldera has an elliptical shape (17×14km) elongated in a N30° trend; both intracaldera and extracaldera ignimbrites covered an area of around 620km2 with a minimum volume estimate of 140km3 (DRE). The 10.3Ma episode generated another elliptical caldera (19×14km), with the same orientation as the previous one, from which intracaldera and outflow ignimbrites covered a total area of about 1700km2, representing a minimum eruption volume of 350km3(DRE).In this paper we discuss the significance of the Cerro Aguas Calientes caldera in comparison with other well known examples from the central Andes in terms of tectonic setting, eruption mechanisms, and volumes of related ignimbrites. We suggest that our kinematic model is a common volcano-tectonic scenario during the Cenozoic in the Puna and Altiplano, which may be applied to explain the origin of other large calderas in the same region. © 2010 Elsevier B.V.
publishDate 2010
dc.date.none.fl_str_mv 2010-07
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/52025
Petrinovic, Ivan Alejandro; Martí, J.; Aguirre Díaz, G. J.; Guzman, Silvina Raquel; Geyer, A.; et al.; The Cerro Aguas Calientes caldera, NW Argentina: An example of a tectonically controlled, polygenetic collapse caldera, and its regional significance; Elsevier Science; Journal of Volcanology and Geothermal Research; 194; 1-3; 7-2010; 15-26
0377-0273
CONICET Digital
CONICET
url http://hdl.handle.net/11336/52025
identifier_str_mv Petrinovic, Ivan Alejandro; Martí, J.; Aguirre Díaz, G. J.; Guzman, Silvina Raquel; Geyer, A.; et al.; The Cerro Aguas Calientes caldera, NW Argentina: An example of a tectonically controlled, polygenetic collapse caldera, and its regional significance; Elsevier Science; Journal of Volcanology and Geothermal Research; 194; 1-3; 7-2010; 15-26
0377-0273
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jvolgeores.2010.04.012
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0377027310001307
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier Science
publisher.none.fl_str_mv Elsevier Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842270178330542080
score 13.13397