Antarctic root endophytes improve physiological performance and yield in crops under salt stress by enhanced energy production and Na+ sequestration
- Autores
- Molina Montenegro, Marco A.; Acuña Rodríguez, Ian S.; Torres-Díaz, Cristian; Gundel, Pedro Emilio; Dreyer, Ingo
- Año de publicación
- 2020
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Climatic change is pointed as one of the major challenges for global food security. Based on current models of climate change, reduction in precipitations and in turn, increase in the soil salinity will be a sharp constraint for crops productivity worldwide. In this context, root fungi appear as a new strategy to improve plant ecophysiological performance and crop yield under abiotic stress. In this study, we evaluated the impact of the two fungal endophytes Penicillium brevicompactum and P. chrysogenum isolated from Antarctic plants on nutrients and Na+ contents, net photosynthesis, water use efficiency, yield and survival in tomato and lettuce, facing salinity stress conditions. Inoculation of plant roots with fungal endophytes resulted in greater fresh and dry biomass production, and an enhanced survival rate under salt conditions. Inoculation of plants with the fungal endophytes was related with a higher up/down-regulation of ion homeostasis by enhanced expression of the NHX1 gene. The two endophytes diminished the effects of salt stress in tomato and lettuce, provoked a higher efficiency in photosynthetic energy production and an improved sequestration of Na+ in vacuoles is suggested by the upregulating of the expression of vacuolar NHX1 Na+/H+ antiporters. Promoting plant-beneficial interactions with root symbionts appears to be an environmentally friendly strategy to mitigate the impact of climate change variables on crop production.
Fil: Molina Montenegro, Marco A.. Universidad Católica del Norte; Chile. Universidad de Talca; Chile. Universidad Católica de Maule; Chile
Fil: Acuña Rodríguez, Ian S.. Universidad de Talca; Chile
Fil: Torres-Díaz, Cristian. Universidad del Bio Bio; Chile
Fil: Gundel, Pedro Emilio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; Argentina
Fil: Dreyer, Ingo. Universidad de Talca; Chile - Materia
-
FUNCTIONAL SYMBIOSIS
ANTARCTIC FUNGAL ENDOPHYTES
STRESS TOLERANCE
SODIUM - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/184516
Ver los metadatos del registro completo
id |
CONICETDig_b3395e9a6bbd5175c5378e50a2a33e11 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/184516 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Antarctic root endophytes improve physiological performance and yield in crops under salt stress by enhanced energy production and Na+ sequestrationMolina Montenegro, Marco A.Acuña Rodríguez, Ian S.Torres-Díaz, CristianGundel, Pedro EmilioDreyer, IngoFUNCTIONAL SYMBIOSISANTARCTIC FUNGAL ENDOPHYTESSTRESS TOLERANCESODIUMhttps://purl.org/becyt/ford/4.1https://purl.org/becyt/ford/4Climatic change is pointed as one of the major challenges for global food security. Based on current models of climate change, reduction in precipitations and in turn, increase in the soil salinity will be a sharp constraint for crops productivity worldwide. In this context, root fungi appear as a new strategy to improve plant ecophysiological performance and crop yield under abiotic stress. In this study, we evaluated the impact of the two fungal endophytes Penicillium brevicompactum and P. chrysogenum isolated from Antarctic plants on nutrients and Na+ contents, net photosynthesis, water use efficiency, yield and survival in tomato and lettuce, facing salinity stress conditions. Inoculation of plant roots with fungal endophytes resulted in greater fresh and dry biomass production, and an enhanced survival rate under salt conditions. Inoculation of plants with the fungal endophytes was related with a higher up/down-regulation of ion homeostasis by enhanced expression of the NHX1 gene. The two endophytes diminished the effects of salt stress in tomato and lettuce, provoked a higher efficiency in photosynthetic energy production and an improved sequestration of Na+ in vacuoles is suggested by the upregulating of the expression of vacuolar NHX1 Na+/H+ antiporters. Promoting plant-beneficial interactions with root symbionts appears to be an environmentally friendly strategy to mitigate the impact of climate change variables on crop production.Fil: Molina Montenegro, Marco A.. Universidad Católica del Norte; Chile. Universidad de Talca; Chile. Universidad Católica de Maule; ChileFil: Acuña Rodríguez, Ian S.. Universidad de Talca; ChileFil: Torres-Díaz, Cristian. Universidad del Bio Bio; ChileFil: Gundel, Pedro Emilio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; ArgentinaFil: Dreyer, Ingo. Universidad de Talca; ChileNature Research2020-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/184516Molina Montenegro, Marco A.; Acuña Rodríguez, Ian S.; Torres-Díaz, Cristian; Gundel, Pedro Emilio; Dreyer, Ingo; Antarctic root endophytes improve physiological performance and yield in crops under salt stress by enhanced energy production and Na+ sequestration; Nature Research; Scientific Reports; 10; 1; 4-2020; 1-102045-2322CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.nature.com/articles/s41598-020-62544-4info:eu-repo/semantics/altIdentifier/doi/10.1038/s41598-020-62544-4info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:17:34Zoai:ri.conicet.gov.ar:11336/184516instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:17:34.647CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Antarctic root endophytes improve physiological performance and yield in crops under salt stress by enhanced energy production and Na+ sequestration |
title |
Antarctic root endophytes improve physiological performance and yield in crops under salt stress by enhanced energy production and Na+ sequestration |
spellingShingle |
Antarctic root endophytes improve physiological performance and yield in crops under salt stress by enhanced energy production and Na+ sequestration Molina Montenegro, Marco A. FUNCTIONAL SYMBIOSIS ANTARCTIC FUNGAL ENDOPHYTES STRESS TOLERANCE SODIUM |
title_short |
Antarctic root endophytes improve physiological performance and yield in crops under salt stress by enhanced energy production and Na+ sequestration |
title_full |
Antarctic root endophytes improve physiological performance and yield in crops under salt stress by enhanced energy production and Na+ sequestration |
title_fullStr |
Antarctic root endophytes improve physiological performance and yield in crops under salt stress by enhanced energy production and Na+ sequestration |
title_full_unstemmed |
Antarctic root endophytes improve physiological performance and yield in crops under salt stress by enhanced energy production and Na+ sequestration |
title_sort |
Antarctic root endophytes improve physiological performance and yield in crops under salt stress by enhanced energy production and Na+ sequestration |
dc.creator.none.fl_str_mv |
Molina Montenegro, Marco A. Acuña Rodríguez, Ian S. Torres-Díaz, Cristian Gundel, Pedro Emilio Dreyer, Ingo |
author |
Molina Montenegro, Marco A. |
author_facet |
Molina Montenegro, Marco A. Acuña Rodríguez, Ian S. Torres-Díaz, Cristian Gundel, Pedro Emilio Dreyer, Ingo |
author_role |
author |
author2 |
Acuña Rodríguez, Ian S. Torres-Díaz, Cristian Gundel, Pedro Emilio Dreyer, Ingo |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
FUNCTIONAL SYMBIOSIS ANTARCTIC FUNGAL ENDOPHYTES STRESS TOLERANCE SODIUM |
topic |
FUNCTIONAL SYMBIOSIS ANTARCTIC FUNGAL ENDOPHYTES STRESS TOLERANCE SODIUM |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/4.1 https://purl.org/becyt/ford/4 |
dc.description.none.fl_txt_mv |
Climatic change is pointed as one of the major challenges for global food security. Based on current models of climate change, reduction in precipitations and in turn, increase in the soil salinity will be a sharp constraint for crops productivity worldwide. In this context, root fungi appear as a new strategy to improve plant ecophysiological performance and crop yield under abiotic stress. In this study, we evaluated the impact of the two fungal endophytes Penicillium brevicompactum and P. chrysogenum isolated from Antarctic plants on nutrients and Na+ contents, net photosynthesis, water use efficiency, yield and survival in tomato and lettuce, facing salinity stress conditions. Inoculation of plant roots with fungal endophytes resulted in greater fresh and dry biomass production, and an enhanced survival rate under salt conditions. Inoculation of plants with the fungal endophytes was related with a higher up/down-regulation of ion homeostasis by enhanced expression of the NHX1 gene. The two endophytes diminished the effects of salt stress in tomato and lettuce, provoked a higher efficiency in photosynthetic energy production and an improved sequestration of Na+ in vacuoles is suggested by the upregulating of the expression of vacuolar NHX1 Na+/H+ antiporters. Promoting plant-beneficial interactions with root symbionts appears to be an environmentally friendly strategy to mitigate the impact of climate change variables on crop production. Fil: Molina Montenegro, Marco A.. Universidad Católica del Norte; Chile. Universidad de Talca; Chile. Universidad Católica de Maule; Chile Fil: Acuña Rodríguez, Ian S.. Universidad de Talca; Chile Fil: Torres-Díaz, Cristian. Universidad del Bio Bio; Chile Fil: Gundel, Pedro Emilio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; Argentina Fil: Dreyer, Ingo. Universidad de Talca; Chile |
description |
Climatic change is pointed as one of the major challenges for global food security. Based on current models of climate change, reduction in precipitations and in turn, increase in the soil salinity will be a sharp constraint for crops productivity worldwide. In this context, root fungi appear as a new strategy to improve plant ecophysiological performance and crop yield under abiotic stress. In this study, we evaluated the impact of the two fungal endophytes Penicillium brevicompactum and P. chrysogenum isolated from Antarctic plants on nutrients and Na+ contents, net photosynthesis, water use efficiency, yield and survival in tomato and lettuce, facing salinity stress conditions. Inoculation of plant roots with fungal endophytes resulted in greater fresh and dry biomass production, and an enhanced survival rate under salt conditions. Inoculation of plants with the fungal endophytes was related with a higher up/down-regulation of ion homeostasis by enhanced expression of the NHX1 gene. The two endophytes diminished the effects of salt stress in tomato and lettuce, provoked a higher efficiency in photosynthetic energy production and an improved sequestration of Na+ in vacuoles is suggested by the upregulating of the expression of vacuolar NHX1 Na+/H+ antiporters. Promoting plant-beneficial interactions with root symbionts appears to be an environmentally friendly strategy to mitigate the impact of climate change variables on crop production. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-04 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/184516 Molina Montenegro, Marco A.; Acuña Rodríguez, Ian S.; Torres-Díaz, Cristian; Gundel, Pedro Emilio; Dreyer, Ingo; Antarctic root endophytes improve physiological performance and yield in crops under salt stress by enhanced energy production and Na+ sequestration; Nature Research; Scientific Reports; 10; 1; 4-2020; 1-10 2045-2322 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/184516 |
identifier_str_mv |
Molina Montenegro, Marco A.; Acuña Rodríguez, Ian S.; Torres-Díaz, Cristian; Gundel, Pedro Emilio; Dreyer, Ingo; Antarctic root endophytes improve physiological performance and yield in crops under salt stress by enhanced energy production and Na+ sequestration; Nature Research; Scientific Reports; 10; 1; 4-2020; 1-10 2045-2322 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.nature.com/articles/s41598-020-62544-4 info:eu-repo/semantics/altIdentifier/doi/10.1038/s41598-020-62544-4 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Nature Research |
publisher.none.fl_str_mv |
Nature Research |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614129851039744 |
score |
13.070432 |