Near-Field Enhancement Contribution to the Photoactivity in Magnetite-Gold Hybrid Nanostructures

Autores
Guzman, Federico Valentin; Mercadal, Pablo Agustin; Coronado, Eduardo A.; Encina, Ezequiel Roberto
Año de publicación
2019
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Hybrid nanostructures composed of magnetic iron oxides and plasmonic metals can convert light energy into chemical energy, and they can be easily manipulated through magnetic fields. As a consequence of these multifunctional features, they can be employed as magnetically recyclable heterogeneous photocatalysts. Herein, we report a two-step method for the preparation of magnetite (Fe3O4)-gold (Au) hybrid nanostructures in aqueous media. The obtained material resembles a core-satellite morphology of 60 nm Fe3O4 nanoparticles surrounded by nearly 20 nm spherical Au nanoparticles attached to their surface. The synthesized hybrid material exhibits enhanced capabilities for methylene blue photodegradation compared with bare Fe3O4 nanoparticles. Detailed electrodynamics simulations were performed to achieve further insight into the improved photoactive properties of the Fe3O4-Au hybrid nanostructures. The theoretical results show that the excitation of localized surface plasmon resonances in the Au component leads to greater light absorption in the Fe3O4 component, which ultimately impacts the improved photocatalytic properties of the hybrid nanostructure. Overall, this work provides a complementary approach toward a complete understanding of the enhanced photoactive properties of hybrid nanostructures and highlights the importance of considering their actual morphology into simulations.
Fil: Guzman, Federico Valentin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; Argentina
Fil: Mercadal, Pablo Agustin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; Argentina
Fil: Coronado, Eduardo A.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; Argentina
Fil: Encina, Ezequiel Roberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; Argentina
Materia
Magnetite-Gold
Photoactivity
Hybrid Nanostructures
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/124524

id CONICETDig_b2f717459b1fa70dc9483191a50067fc
oai_identifier_str oai:ri.conicet.gov.ar:11336/124524
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Near-Field Enhancement Contribution to the Photoactivity in Magnetite-Gold Hybrid NanostructuresGuzman, Federico ValentinMercadal, Pablo AgustinCoronado, Eduardo A.Encina, Ezequiel RobertoMagnetite-GoldPhotoactivityHybrid Nanostructureshttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1Hybrid nanostructures composed of magnetic iron oxides and plasmonic metals can convert light energy into chemical energy, and they can be easily manipulated through magnetic fields. As a consequence of these multifunctional features, they can be employed as magnetically recyclable heterogeneous photocatalysts. Herein, we report a two-step method for the preparation of magnetite (Fe3O4)-gold (Au) hybrid nanostructures in aqueous media. The obtained material resembles a core-satellite morphology of 60 nm Fe3O4 nanoparticles surrounded by nearly 20 nm spherical Au nanoparticles attached to their surface. The synthesized hybrid material exhibits enhanced capabilities for methylene blue photodegradation compared with bare Fe3O4 nanoparticles. Detailed electrodynamics simulations were performed to achieve further insight into the improved photoactive properties of the Fe3O4-Au hybrid nanostructures. The theoretical results show that the excitation of localized surface plasmon resonances in the Au component leads to greater light absorption in the Fe3O4 component, which ultimately impacts the improved photocatalytic properties of the hybrid nanostructure. Overall, this work provides a complementary approach toward a complete understanding of the enhanced photoactive properties of hybrid nanostructures and highlights the importance of considering their actual morphology into simulations.Fil: Guzman, Federico Valentin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; ArgentinaFil: Mercadal, Pablo Agustin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; ArgentinaFil: Coronado, Eduardo A.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; ArgentinaFil: Encina, Ezequiel Roberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; ArgentinaAmerican Chemical Society2019-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/124524Guzman, Federico Valentin; Mercadal, Pablo Agustin; Coronado, Eduardo A.; Encina, Ezequiel Roberto; Near-Field Enhancement Contribution to the Photoactivity in Magnetite-Gold Hybrid Nanostructures; American Chemical Society; Journal of Physical Chemistry C; 123; 49; 12-2019; 29891-298991932-7447CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/10.1021/acs.jpcc.9b09421info:eu-repo/semantics/altIdentifier/doi/10.1021/acs.jpcc.9b09421info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:44:58Zoai:ri.conicet.gov.ar:11336/124524instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:44:59.018CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Near-Field Enhancement Contribution to the Photoactivity in Magnetite-Gold Hybrid Nanostructures
title Near-Field Enhancement Contribution to the Photoactivity in Magnetite-Gold Hybrid Nanostructures
spellingShingle Near-Field Enhancement Contribution to the Photoactivity in Magnetite-Gold Hybrid Nanostructures
Guzman, Federico Valentin
Magnetite-Gold
Photoactivity
Hybrid Nanostructures
title_short Near-Field Enhancement Contribution to the Photoactivity in Magnetite-Gold Hybrid Nanostructures
title_full Near-Field Enhancement Contribution to the Photoactivity in Magnetite-Gold Hybrid Nanostructures
title_fullStr Near-Field Enhancement Contribution to the Photoactivity in Magnetite-Gold Hybrid Nanostructures
title_full_unstemmed Near-Field Enhancement Contribution to the Photoactivity in Magnetite-Gold Hybrid Nanostructures
title_sort Near-Field Enhancement Contribution to the Photoactivity in Magnetite-Gold Hybrid Nanostructures
dc.creator.none.fl_str_mv Guzman, Federico Valentin
Mercadal, Pablo Agustin
Coronado, Eduardo A.
Encina, Ezequiel Roberto
author Guzman, Federico Valentin
author_facet Guzman, Federico Valentin
Mercadal, Pablo Agustin
Coronado, Eduardo A.
Encina, Ezequiel Roberto
author_role author
author2 Mercadal, Pablo Agustin
Coronado, Eduardo A.
Encina, Ezequiel Roberto
author2_role author
author
author
dc.subject.none.fl_str_mv Magnetite-Gold
Photoactivity
Hybrid Nanostructures
topic Magnetite-Gold
Photoactivity
Hybrid Nanostructures
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.4
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Hybrid nanostructures composed of magnetic iron oxides and plasmonic metals can convert light energy into chemical energy, and they can be easily manipulated through magnetic fields. As a consequence of these multifunctional features, they can be employed as magnetically recyclable heterogeneous photocatalysts. Herein, we report a two-step method for the preparation of magnetite (Fe3O4)-gold (Au) hybrid nanostructures in aqueous media. The obtained material resembles a core-satellite morphology of 60 nm Fe3O4 nanoparticles surrounded by nearly 20 nm spherical Au nanoparticles attached to their surface. The synthesized hybrid material exhibits enhanced capabilities for methylene blue photodegradation compared with bare Fe3O4 nanoparticles. Detailed electrodynamics simulations were performed to achieve further insight into the improved photoactive properties of the Fe3O4-Au hybrid nanostructures. The theoretical results show that the excitation of localized surface plasmon resonances in the Au component leads to greater light absorption in the Fe3O4 component, which ultimately impacts the improved photocatalytic properties of the hybrid nanostructure. Overall, this work provides a complementary approach toward a complete understanding of the enhanced photoactive properties of hybrid nanostructures and highlights the importance of considering their actual morphology into simulations.
Fil: Guzman, Federico Valentin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; Argentina
Fil: Mercadal, Pablo Agustin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; Argentina
Fil: Coronado, Eduardo A.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; Argentina
Fil: Encina, Ezequiel Roberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; Argentina
description Hybrid nanostructures composed of magnetic iron oxides and plasmonic metals can convert light energy into chemical energy, and they can be easily manipulated through magnetic fields. As a consequence of these multifunctional features, they can be employed as magnetically recyclable heterogeneous photocatalysts. Herein, we report a two-step method for the preparation of magnetite (Fe3O4)-gold (Au) hybrid nanostructures in aqueous media. The obtained material resembles a core-satellite morphology of 60 nm Fe3O4 nanoparticles surrounded by nearly 20 nm spherical Au nanoparticles attached to their surface. The synthesized hybrid material exhibits enhanced capabilities for methylene blue photodegradation compared with bare Fe3O4 nanoparticles. Detailed electrodynamics simulations were performed to achieve further insight into the improved photoactive properties of the Fe3O4-Au hybrid nanostructures. The theoretical results show that the excitation of localized surface plasmon resonances in the Au component leads to greater light absorption in the Fe3O4 component, which ultimately impacts the improved photocatalytic properties of the hybrid nanostructure. Overall, this work provides a complementary approach toward a complete understanding of the enhanced photoactive properties of hybrid nanostructures and highlights the importance of considering their actual morphology into simulations.
publishDate 2019
dc.date.none.fl_str_mv 2019-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/124524
Guzman, Federico Valentin; Mercadal, Pablo Agustin; Coronado, Eduardo A.; Encina, Ezequiel Roberto; Near-Field Enhancement Contribution to the Photoactivity in Magnetite-Gold Hybrid Nanostructures; American Chemical Society; Journal of Physical Chemistry C; 123; 49; 12-2019; 29891-29899
1932-7447
CONICET Digital
CONICET
url http://hdl.handle.net/11336/124524
identifier_str_mv Guzman, Federico Valentin; Mercadal, Pablo Agustin; Coronado, Eduardo A.; Encina, Ezequiel Roberto; Near-Field Enhancement Contribution to the Photoactivity in Magnetite-Gold Hybrid Nanostructures; American Chemical Society; Journal of Physical Chemistry C; 123; 49; 12-2019; 29891-29899
1932-7447
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/10.1021/acs.jpcc.9b09421
info:eu-repo/semantics/altIdentifier/doi/10.1021/acs.jpcc.9b09421
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Chemical Society
publisher.none.fl_str_mv American Chemical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846782145246265344
score 12.982451