Dual constant-flux energy cascades to both large scales and small scales

Autores
Pouquet, A.; Marino, Raffaele; Mininni, Pablo Daniel; Rosenberg, Duane
Año de publicación
2017
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In this paper, we present an overview of concepts and data concerning inverse cascades of excitation towards scales larger than the forcing scale in a variety of contexts, from two-dimensional fluids and wave turbulence to geophysical flows in the presence of rotation and stratification. We briefly discuss the role of anisotropy in the occurrence and properties of such cascades. We then show that the cascade of some invariant, for example, the total energy, may be transferred through nonlinear interactions to both the small scales and the large scales, with in each case a constant flux. This is in contrast to the classical picture, and we illustrate such a dual cascade in the context of atmospheric and oceanic observations, direct numerical simulations, and modeling. We also show that this dual cascade of total energy can in fact be decomposed in some cases into separate cascades of the kinetic and potential energies, provided the Froude and Rossby numbers are small enough. In all cases, the potential energy flux remains small, of the order of 10% or less relative to the kinetic energy flux. Finally, we demonstrate that, in the small-scale inertial range, approximate equipartition between potential and kinetic modes is obtained, leading to an energy ratio close to one, with strong departure at large scales due to the dominant kinetic energy inverse cascade and piling-up at the lowest spatial frequency and at small scales due to unbalanced dissipation processes, even though the Prandtl number is equal to one.
Fil: Pouquet, A.. National Center for Atmospheric Research; Estados Unidos. State University of Colorado Boulder; Estados Unidos
Fil: Marino, Raffaele. École Centrale de Lyon; Francia
Fil: Mininni, Pablo Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Rosenberg, Duane. National Oceanic and Atmospheric Administration; Estados Unidos
Materia
Turbulence
Inverse Cascades
Rotating Flows
Stratified Flows
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/43573

id CONICETDig_b2427cd3b79b89dcea3505632140a16d
oai_identifier_str oai:ri.conicet.gov.ar:11336/43573
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Dual constant-flux energy cascades to both large scales and small scalesPouquet, A.Marino, RaffaeleMininni, Pablo DanielRosenberg, DuaneTurbulenceInverse CascadesRotating FlowsStratified Flowshttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1In this paper, we present an overview of concepts and data concerning inverse cascades of excitation towards scales larger than the forcing scale in a variety of contexts, from two-dimensional fluids and wave turbulence to geophysical flows in the presence of rotation and stratification. We briefly discuss the role of anisotropy in the occurrence and properties of such cascades. We then show that the cascade of some invariant, for example, the total energy, may be transferred through nonlinear interactions to both the small scales and the large scales, with in each case a constant flux. This is in contrast to the classical picture, and we illustrate such a dual cascade in the context of atmospheric and oceanic observations, direct numerical simulations, and modeling. We also show that this dual cascade of total energy can in fact be decomposed in some cases into separate cascades of the kinetic and potential energies, provided the Froude and Rossby numbers are small enough. In all cases, the potential energy flux remains small, of the order of 10% or less relative to the kinetic energy flux. Finally, we demonstrate that, in the small-scale inertial range, approximate equipartition between potential and kinetic modes is obtained, leading to an energy ratio close to one, with strong departure at large scales due to the dominant kinetic energy inverse cascade and piling-up at the lowest spatial frequency and at small scales due to unbalanced dissipation processes, even though the Prandtl number is equal to one.Fil: Pouquet, A.. National Center for Atmospheric Research; Estados Unidos. State University of Colorado Boulder; Estados UnidosFil: Marino, Raffaele. École Centrale de Lyon; FranciaFil: Mininni, Pablo Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Rosenberg, Duane. National Oceanic and Atmospheric Administration; Estados UnidosAmerican Institute of Physics2017-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/43573Pouquet, A.; Marino, Raffaele; Mininni, Pablo Daniel; Rosenberg, Duane; Dual constant-flux energy cascades to both large scales and small scales; American Institute of Physics; Physics of Fluids; 29; 11; 11-2017; 1-191070-6631CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://aip.scitation.org/doi/10.1063/1.5000730info:eu-repo/semantics/altIdentifier/doi/10.1063/1.5000730info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:49:23Zoai:ri.conicet.gov.ar:11336/43573instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:49:25.119CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Dual constant-flux energy cascades to both large scales and small scales
title Dual constant-flux energy cascades to both large scales and small scales
spellingShingle Dual constant-flux energy cascades to both large scales and small scales
Pouquet, A.
Turbulence
Inverse Cascades
Rotating Flows
Stratified Flows
title_short Dual constant-flux energy cascades to both large scales and small scales
title_full Dual constant-flux energy cascades to both large scales and small scales
title_fullStr Dual constant-flux energy cascades to both large scales and small scales
title_full_unstemmed Dual constant-flux energy cascades to both large scales and small scales
title_sort Dual constant-flux energy cascades to both large scales and small scales
dc.creator.none.fl_str_mv Pouquet, A.
Marino, Raffaele
Mininni, Pablo Daniel
Rosenberg, Duane
author Pouquet, A.
author_facet Pouquet, A.
Marino, Raffaele
Mininni, Pablo Daniel
Rosenberg, Duane
author_role author
author2 Marino, Raffaele
Mininni, Pablo Daniel
Rosenberg, Duane
author2_role author
author
author
dc.subject.none.fl_str_mv Turbulence
Inverse Cascades
Rotating Flows
Stratified Flows
topic Turbulence
Inverse Cascades
Rotating Flows
Stratified Flows
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv In this paper, we present an overview of concepts and data concerning inverse cascades of excitation towards scales larger than the forcing scale in a variety of contexts, from two-dimensional fluids and wave turbulence to geophysical flows in the presence of rotation and stratification. We briefly discuss the role of anisotropy in the occurrence and properties of such cascades. We then show that the cascade of some invariant, for example, the total energy, may be transferred through nonlinear interactions to both the small scales and the large scales, with in each case a constant flux. This is in contrast to the classical picture, and we illustrate such a dual cascade in the context of atmospheric and oceanic observations, direct numerical simulations, and modeling. We also show that this dual cascade of total energy can in fact be decomposed in some cases into separate cascades of the kinetic and potential energies, provided the Froude and Rossby numbers are small enough. In all cases, the potential energy flux remains small, of the order of 10% or less relative to the kinetic energy flux. Finally, we demonstrate that, in the small-scale inertial range, approximate equipartition between potential and kinetic modes is obtained, leading to an energy ratio close to one, with strong departure at large scales due to the dominant kinetic energy inverse cascade and piling-up at the lowest spatial frequency and at small scales due to unbalanced dissipation processes, even though the Prandtl number is equal to one.
Fil: Pouquet, A.. National Center for Atmospheric Research; Estados Unidos. State University of Colorado Boulder; Estados Unidos
Fil: Marino, Raffaele. École Centrale de Lyon; Francia
Fil: Mininni, Pablo Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Rosenberg, Duane. National Oceanic and Atmospheric Administration; Estados Unidos
description In this paper, we present an overview of concepts and data concerning inverse cascades of excitation towards scales larger than the forcing scale in a variety of contexts, from two-dimensional fluids and wave turbulence to geophysical flows in the presence of rotation and stratification. We briefly discuss the role of anisotropy in the occurrence and properties of such cascades. We then show that the cascade of some invariant, for example, the total energy, may be transferred through nonlinear interactions to both the small scales and the large scales, with in each case a constant flux. This is in contrast to the classical picture, and we illustrate such a dual cascade in the context of atmospheric and oceanic observations, direct numerical simulations, and modeling. We also show that this dual cascade of total energy can in fact be decomposed in some cases into separate cascades of the kinetic and potential energies, provided the Froude and Rossby numbers are small enough. In all cases, the potential energy flux remains small, of the order of 10% or less relative to the kinetic energy flux. Finally, we demonstrate that, in the small-scale inertial range, approximate equipartition between potential and kinetic modes is obtained, leading to an energy ratio close to one, with strong departure at large scales due to the dominant kinetic energy inverse cascade and piling-up at the lowest spatial frequency and at small scales due to unbalanced dissipation processes, even though the Prandtl number is equal to one.
publishDate 2017
dc.date.none.fl_str_mv 2017-11
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/43573
Pouquet, A.; Marino, Raffaele; Mininni, Pablo Daniel; Rosenberg, Duane; Dual constant-flux energy cascades to both large scales and small scales; American Institute of Physics; Physics of Fluids; 29; 11; 11-2017; 1-19
1070-6631
CONICET Digital
CONICET
url http://hdl.handle.net/11336/43573
identifier_str_mv Pouquet, A.; Marino, Raffaele; Mininni, Pablo Daniel; Rosenberg, Duane; Dual constant-flux energy cascades to both large scales and small scales; American Institute of Physics; Physics of Fluids; 29; 11; 11-2017; 1-19
1070-6631
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://aip.scitation.org/doi/10.1063/1.5000730
info:eu-repo/semantics/altIdentifier/doi/10.1063/1.5000730
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Institute of Physics
publisher.none.fl_str_mv American Institute of Physics
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842268972131549184
score 13.13397