Submillimeter array observations of the RX J1633.9-2442 transition disk: evidence for multiple planets in the making

Autores
Cieza, Lucas A.; Mathews, Geoffrey S.; Williams, Jonathan P.; Menard, Francois C.; Kraus, Adam L.; Schreiber, Matthias R.; Romero, Gisela Andrea; Orellana, Mariana Dominga; Ireland, Michael J.
Año de publicación
2012
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We present continuum high-resolution Submillimeter Array (SMA) observations of the transition disk object RX J1633.9-2442, which is located in the Ophiuchus molecular cloud and has recently been identified as a likely site of ongoing giant planet formation. The observations were taken at 340 GHz (880 μm) with the SMA in its most extended configuration, resulting in an angular resolution of 0.3arcsec (35 AU at the distance of the target). We find that the disk is highly inclined (i ~ 50°) and has an inner cavity ~25 AU in radius, which is clearly resolved by our observations. We simultaneously model the entire optical to millimeter wavelength spectral energy distribution and SMA visibilities of RX J1633.9-2442 in order to constrain the structure of its disk. We find that an empty cavity ~25 AU in radius is inconsistent with the excess emission observed at 12, 22, and 24 μm. Instead, the mid-IR excess can be modeled by either a narrow, optically thick ring at ~10 AU or an optically thin region extending from ~7 AU to ~25 AU. The inner disk is mostly depleted of small dust grains as attested by the lack of detectable near-IR excess. We also present deep Keck aperture masking observations in the near-IR, which rule out the presence of a companion up to 500 times fainter than the primary star (in K band) for projected separations in the 5-20 AU range. We argue that the complex structure of the RX J1633.9-2442 disk is best explained by multiple planets embedded within the disk. We also suggest that the properties and incidence of objects such as RX J1633.9-2442, T Cha, and LkCa 15 (and those of the companions recently identified to these two latter objects) are most consistent with the runaway gas accretion phase of the core accretion model, when giant planets gain their envelopes and suddenly become massive enough to open wide gaps in the disk.
Fil: Cieza, Lucas A.. University Of Hawaii At Manoa; Estados Unidos
Fil: Mathews, Geoffrey S.. University Of Hawaii At Manoa; Estados Unidos
Fil: Williams, Jonathan P.. University Of Hawaii At Manoa; Estados Unidos
Fil: Menard, Francois C.. Institut de Planetologie et de Astrophysique de Grenoble; Francia
Fil: Kraus, Adam L.. University Of Hawaii At Manoa; Estados Unidos
Fil: Schreiber, Matthias R.. Universidad de Valparaíso; Chile
Fil: Romero, Gisela Andrea. Universidad de Valparaíso; Chile. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Orellana, Mariana Dominga. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Ireland, Michael J.. Macquarie University; Australia
Materia
Circumstellar Matter
Protoplanetary Disk
Rx J1633.9-2442 (Galaxia)
Submillimeter Astronomy
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/16628

id CONICETDig_b22f7af946fc040a1c1a864db0d4b264
oai_identifier_str oai:ri.conicet.gov.ar:11336/16628
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Submillimeter array observations of the RX J1633.9-2442 transition disk: evidence for multiple planets in the makingCieza, Lucas A.Mathews, Geoffrey S.Williams, Jonathan P.Menard, Francois C.Kraus, Adam L.Schreiber, Matthias R.Romero, Gisela AndreaOrellana, Mariana DomingaIreland, Michael J.Circumstellar MatterProtoplanetary DiskRx J1633.9-2442 (Galaxia)Submillimeter Astronomyhttps://purl.org/becyt/ford/1.7https://purl.org/becyt/ford/1We present continuum high-resolution Submillimeter Array (SMA) observations of the transition disk object RX J1633.9-2442, which is located in the Ophiuchus molecular cloud and has recently been identified as a likely site of ongoing giant planet formation. The observations were taken at 340 GHz (880 μm) with the SMA in its most extended configuration, resulting in an angular resolution of 0.3arcsec (35 AU at the distance of the target). We find that the disk is highly inclined (i ~ 50°) and has an inner cavity ~25 AU in radius, which is clearly resolved by our observations. We simultaneously model the entire optical to millimeter wavelength spectral energy distribution and SMA visibilities of RX J1633.9-2442 in order to constrain the structure of its disk. We find that an empty cavity ~25 AU in radius is inconsistent with the excess emission observed at 12, 22, and 24 μm. Instead, the mid-IR excess can be modeled by either a narrow, optically thick ring at ~10 AU or an optically thin region extending from ~7 AU to ~25 AU. The inner disk is mostly depleted of small dust grains as attested by the lack of detectable near-IR excess. We also present deep Keck aperture masking observations in the near-IR, which rule out the presence of a companion up to 500 times fainter than the primary star (in K band) for projected separations in the 5-20 AU range. We argue that the complex structure of the RX J1633.9-2442 disk is best explained by multiple planets embedded within the disk. We also suggest that the properties and incidence of objects such as RX J1633.9-2442, T Cha, and LkCa 15 (and those of the companions recently identified to these two latter objects) are most consistent with the runaway gas accretion phase of the core accretion model, when giant planets gain their envelopes and suddenly become massive enough to open wide gaps in the disk.Fil: Cieza, Lucas A.. University Of Hawaii At Manoa; Estados UnidosFil: Mathews, Geoffrey S.. University Of Hawaii At Manoa; Estados UnidosFil: Williams, Jonathan P.. University Of Hawaii At Manoa; Estados UnidosFil: Menard, Francois C.. Institut de Planetologie et de Astrophysique de Grenoble; FranciaFil: Kraus, Adam L.. University Of Hawaii At Manoa; Estados UnidosFil: Schreiber, Matthias R.. Universidad de Valparaíso; ChileFil: Romero, Gisela Andrea. Universidad de Valparaíso; Chile. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Orellana, Mariana Dominga. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Ireland, Michael J.. Macquarie University; AustraliaIop Publishing2012-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/16628Cieza, Lucas A.; Mathews, Geoffrey S.; Williams, Jonathan P.; Menard, Francois C.; Kraus, Adam L.; et al.; Submillimeter array observations of the RX J1633.9-2442 transition disk: evidence for multiple planets in the making; Iop Publishing; Astrophysical Journal; 752; 1; 6-2012; 75-860004-637Xenginfo:eu-repo/semantics/altIdentifier/url/http://iopscience.iop.org/0004-637X/752/1/75/info:eu-repo/semantics/altIdentifier/doi/10.1088/0004-637X/752/1/75info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:24:40Zoai:ri.conicet.gov.ar:11336/16628instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:24:40.933CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Submillimeter array observations of the RX J1633.9-2442 transition disk: evidence for multiple planets in the making
title Submillimeter array observations of the RX J1633.9-2442 transition disk: evidence for multiple planets in the making
spellingShingle Submillimeter array observations of the RX J1633.9-2442 transition disk: evidence for multiple planets in the making
Cieza, Lucas A.
Circumstellar Matter
Protoplanetary Disk
Rx J1633.9-2442 (Galaxia)
Submillimeter Astronomy
title_short Submillimeter array observations of the RX J1633.9-2442 transition disk: evidence for multiple planets in the making
title_full Submillimeter array observations of the RX J1633.9-2442 transition disk: evidence for multiple planets in the making
title_fullStr Submillimeter array observations of the RX J1633.9-2442 transition disk: evidence for multiple planets in the making
title_full_unstemmed Submillimeter array observations of the RX J1633.9-2442 transition disk: evidence for multiple planets in the making
title_sort Submillimeter array observations of the RX J1633.9-2442 transition disk: evidence for multiple planets in the making
dc.creator.none.fl_str_mv Cieza, Lucas A.
Mathews, Geoffrey S.
Williams, Jonathan P.
Menard, Francois C.
Kraus, Adam L.
Schreiber, Matthias R.
Romero, Gisela Andrea
Orellana, Mariana Dominga
Ireland, Michael J.
author Cieza, Lucas A.
author_facet Cieza, Lucas A.
Mathews, Geoffrey S.
Williams, Jonathan P.
Menard, Francois C.
Kraus, Adam L.
Schreiber, Matthias R.
Romero, Gisela Andrea
Orellana, Mariana Dominga
Ireland, Michael J.
author_role author
author2 Mathews, Geoffrey S.
Williams, Jonathan P.
Menard, Francois C.
Kraus, Adam L.
Schreiber, Matthias R.
Romero, Gisela Andrea
Orellana, Mariana Dominga
Ireland, Michael J.
author2_role author
author
author
author
author
author
author
author
dc.subject.none.fl_str_mv Circumstellar Matter
Protoplanetary Disk
Rx J1633.9-2442 (Galaxia)
Submillimeter Astronomy
topic Circumstellar Matter
Protoplanetary Disk
Rx J1633.9-2442 (Galaxia)
Submillimeter Astronomy
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.7
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We present continuum high-resolution Submillimeter Array (SMA) observations of the transition disk object RX J1633.9-2442, which is located in the Ophiuchus molecular cloud and has recently been identified as a likely site of ongoing giant planet formation. The observations were taken at 340 GHz (880 μm) with the SMA in its most extended configuration, resulting in an angular resolution of 0.3arcsec (35 AU at the distance of the target). We find that the disk is highly inclined (i ~ 50°) and has an inner cavity ~25 AU in radius, which is clearly resolved by our observations. We simultaneously model the entire optical to millimeter wavelength spectral energy distribution and SMA visibilities of RX J1633.9-2442 in order to constrain the structure of its disk. We find that an empty cavity ~25 AU in radius is inconsistent with the excess emission observed at 12, 22, and 24 μm. Instead, the mid-IR excess can be modeled by either a narrow, optically thick ring at ~10 AU or an optically thin region extending from ~7 AU to ~25 AU. The inner disk is mostly depleted of small dust grains as attested by the lack of detectable near-IR excess. We also present deep Keck aperture masking observations in the near-IR, which rule out the presence of a companion up to 500 times fainter than the primary star (in K band) for projected separations in the 5-20 AU range. We argue that the complex structure of the RX J1633.9-2442 disk is best explained by multiple planets embedded within the disk. We also suggest that the properties and incidence of objects such as RX J1633.9-2442, T Cha, and LkCa 15 (and those of the companions recently identified to these two latter objects) are most consistent with the runaway gas accretion phase of the core accretion model, when giant planets gain their envelopes and suddenly become massive enough to open wide gaps in the disk.
Fil: Cieza, Lucas A.. University Of Hawaii At Manoa; Estados Unidos
Fil: Mathews, Geoffrey S.. University Of Hawaii At Manoa; Estados Unidos
Fil: Williams, Jonathan P.. University Of Hawaii At Manoa; Estados Unidos
Fil: Menard, Francois C.. Institut de Planetologie et de Astrophysique de Grenoble; Francia
Fil: Kraus, Adam L.. University Of Hawaii At Manoa; Estados Unidos
Fil: Schreiber, Matthias R.. Universidad de Valparaíso; Chile
Fil: Romero, Gisela Andrea. Universidad de Valparaíso; Chile. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Orellana, Mariana Dominga. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Ireland, Michael J.. Macquarie University; Australia
description We present continuum high-resolution Submillimeter Array (SMA) observations of the transition disk object RX J1633.9-2442, which is located in the Ophiuchus molecular cloud and has recently been identified as a likely site of ongoing giant planet formation. The observations were taken at 340 GHz (880 μm) with the SMA in its most extended configuration, resulting in an angular resolution of 0.3arcsec (35 AU at the distance of the target). We find that the disk is highly inclined (i ~ 50°) and has an inner cavity ~25 AU in radius, which is clearly resolved by our observations. We simultaneously model the entire optical to millimeter wavelength spectral energy distribution and SMA visibilities of RX J1633.9-2442 in order to constrain the structure of its disk. We find that an empty cavity ~25 AU in radius is inconsistent with the excess emission observed at 12, 22, and 24 μm. Instead, the mid-IR excess can be modeled by either a narrow, optically thick ring at ~10 AU or an optically thin region extending from ~7 AU to ~25 AU. The inner disk is mostly depleted of small dust grains as attested by the lack of detectable near-IR excess. We also present deep Keck aperture masking observations in the near-IR, which rule out the presence of a companion up to 500 times fainter than the primary star (in K band) for projected separations in the 5-20 AU range. We argue that the complex structure of the RX J1633.9-2442 disk is best explained by multiple planets embedded within the disk. We also suggest that the properties and incidence of objects such as RX J1633.9-2442, T Cha, and LkCa 15 (and those of the companions recently identified to these two latter objects) are most consistent with the runaway gas accretion phase of the core accretion model, when giant planets gain their envelopes and suddenly become massive enough to open wide gaps in the disk.
publishDate 2012
dc.date.none.fl_str_mv 2012-06
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/16628
Cieza, Lucas A.; Mathews, Geoffrey S.; Williams, Jonathan P.; Menard, Francois C.; Kraus, Adam L.; et al.; Submillimeter array observations of the RX J1633.9-2442 transition disk: evidence for multiple planets in the making; Iop Publishing; Astrophysical Journal; 752; 1; 6-2012; 75-86
0004-637X
url http://hdl.handle.net/11336/16628
identifier_str_mv Cieza, Lucas A.; Mathews, Geoffrey S.; Williams, Jonathan P.; Menard, Francois C.; Kraus, Adam L.; et al.; Submillimeter array observations of the RX J1633.9-2442 transition disk: evidence for multiple planets in the making; Iop Publishing; Astrophysical Journal; 752; 1; 6-2012; 75-86
0004-637X
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://iopscience.iop.org/0004-637X/752/1/75/
info:eu-repo/semantics/altIdentifier/doi/10.1088/0004-637X/752/1/75
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Iop Publishing
publisher.none.fl_str_mv Iop Publishing
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842981370771537920
score 12.48226