An Adaptive Vision-based Sensor for Underwater Line Detection Employing Shape and Color Image Segmentation
- Autores
- Jordan, Mario Alberto; Trabes, Emanuel
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- This work aims the design and implementation of an adaptive vision-based sensor for detecting a pipe on underwater scenes in real time. The motivation is focused to future applications of vision servo control in underwater vehicles. The approach employs color and shape image segmentation together with an adjust mechanism that aims continuously in time to reach the best setup of a parameter set of the color image segmentation. The sensor performs very well even in the case of large and rapid changes in the scene illumination. On the basis of many experiments carried out in real scenes and the comparison with similar algorithms in the state-of-the-art field on the same application, the approach gets a better positioning with respect to related results above all in the case of extremely changing and poor luminance conditions. As drawback, the required computation time to achieve optimal values for the first time (auto-tuning phase) may be large; contrary to the adaptive ongoing process, in where the optimization is much more agile.
Fil: Jordan, Mario Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Bahía Blanca. Instituto Argentino de Oceanografía (i); Argentina. Universidad Nacional del Sur. Departamento de Ingenieria Electrica y de Computadoras; Argentina
Fil: Trabes, Emanuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Bahía Blanca. Instituto Argentino de Oceanografía (i); Argentina - Materia
-
underwater pipeline detection
vision-based sensor
HSV model
optimal parameter adjustments
chanching illumination levels
adaptative sensor - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/12571
Ver los metadatos del registro completo
id |
CONICETDig_b1cfa183ea8429d3d2e7e13169c3c2d8 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/12571 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
An Adaptive Vision-based Sensor for Underwater Line Detection Employing Shape and Color Image SegmentationJordan, Mario AlbertoTrabes, Emanuelunderwater pipeline detectionvision-based sensorHSV modeloptimal parameter adjustmentschanching illumination levelsadaptative sensorhttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2This work aims the design and implementation of an adaptive vision-based sensor for detecting a pipe on underwater scenes in real time. The motivation is focused to future applications of vision servo control in underwater vehicles. The approach employs color and shape image segmentation together with an adjust mechanism that aims continuously in time to reach the best setup of a parameter set of the color image segmentation. The sensor performs very well even in the case of large and rapid changes in the scene illumination. On the basis of many experiments carried out in real scenes and the comparison with similar algorithms in the state-of-the-art field on the same application, the approach gets a better positioning with respect to related results above all in the case of extremely changing and poor luminance conditions. As drawback, the required computation time to achieve optimal values for the first time (auto-tuning phase) may be large; contrary to the adaptive ongoing process, in where the optimization is much more agile.Fil: Jordan, Mario Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Bahía Blanca. Instituto Argentino de Oceanografía (i); Argentina. Universidad Nacional del Sur. Departamento de Ingenieria Electrica y de Computadoras; ArgentinaFil: Trabes, Emanuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Bahía Blanca. Instituto Argentino de Oceanografía (i); ArgentinaScience and Engineering Institute2015-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/12571Jordan, Mario Alberto; Trabes, Emanuel; An Adaptive Vision-based Sensor for Underwater Line Detection Employing Shape and Color Image Segmentation; Science and Engineering Institute; Journal of Automation and Control Engineering; 3; 6; 4-2015; 480-4862301-37022325-7415enginfo:eu-repo/semantics/altIdentifier/url/http://www.joace.org/index.php?m=content&c=index&a=show&catid=50&id=278info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:31:09Zoai:ri.conicet.gov.ar:11336/12571instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:31:10.148CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
An Adaptive Vision-based Sensor for Underwater Line Detection Employing Shape and Color Image Segmentation |
title |
An Adaptive Vision-based Sensor for Underwater Line Detection Employing Shape and Color Image Segmentation |
spellingShingle |
An Adaptive Vision-based Sensor for Underwater Line Detection Employing Shape and Color Image Segmentation Jordan, Mario Alberto underwater pipeline detection vision-based sensor HSV model optimal parameter adjustments chanching illumination levels adaptative sensor |
title_short |
An Adaptive Vision-based Sensor for Underwater Line Detection Employing Shape and Color Image Segmentation |
title_full |
An Adaptive Vision-based Sensor for Underwater Line Detection Employing Shape and Color Image Segmentation |
title_fullStr |
An Adaptive Vision-based Sensor for Underwater Line Detection Employing Shape and Color Image Segmentation |
title_full_unstemmed |
An Adaptive Vision-based Sensor for Underwater Line Detection Employing Shape and Color Image Segmentation |
title_sort |
An Adaptive Vision-based Sensor for Underwater Line Detection Employing Shape and Color Image Segmentation |
dc.creator.none.fl_str_mv |
Jordan, Mario Alberto Trabes, Emanuel |
author |
Jordan, Mario Alberto |
author_facet |
Jordan, Mario Alberto Trabes, Emanuel |
author_role |
author |
author2 |
Trabes, Emanuel |
author2_role |
author |
dc.subject.none.fl_str_mv |
underwater pipeline detection vision-based sensor HSV model optimal parameter adjustments chanching illumination levels adaptative sensor |
topic |
underwater pipeline detection vision-based sensor HSV model optimal parameter adjustments chanching illumination levels adaptative sensor |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.2 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
This work aims the design and implementation of an adaptive vision-based sensor for detecting a pipe on underwater scenes in real time. The motivation is focused to future applications of vision servo control in underwater vehicles. The approach employs color and shape image segmentation together with an adjust mechanism that aims continuously in time to reach the best setup of a parameter set of the color image segmentation. The sensor performs very well even in the case of large and rapid changes in the scene illumination. On the basis of many experiments carried out in real scenes and the comparison with similar algorithms in the state-of-the-art field on the same application, the approach gets a better positioning with respect to related results above all in the case of extremely changing and poor luminance conditions. As drawback, the required computation time to achieve optimal values for the first time (auto-tuning phase) may be large; contrary to the adaptive ongoing process, in where the optimization is much more agile. Fil: Jordan, Mario Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Bahía Blanca. Instituto Argentino de Oceanografía (i); Argentina. Universidad Nacional del Sur. Departamento de Ingenieria Electrica y de Computadoras; Argentina Fil: Trabes, Emanuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Bahía Blanca. Instituto Argentino de Oceanografía (i); Argentina |
description |
This work aims the design and implementation of an adaptive vision-based sensor for detecting a pipe on underwater scenes in real time. The motivation is focused to future applications of vision servo control in underwater vehicles. The approach employs color and shape image segmentation together with an adjust mechanism that aims continuously in time to reach the best setup of a parameter set of the color image segmentation. The sensor performs very well even in the case of large and rapid changes in the scene illumination. On the basis of many experiments carried out in real scenes and the comparison with similar algorithms in the state-of-the-art field on the same application, the approach gets a better positioning with respect to related results above all in the case of extremely changing and poor luminance conditions. As drawback, the required computation time to achieve optimal values for the first time (auto-tuning phase) may be large; contrary to the adaptive ongoing process, in where the optimization is much more agile. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-04 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/12571 Jordan, Mario Alberto; Trabes, Emanuel; An Adaptive Vision-based Sensor for Underwater Line Detection Employing Shape and Color Image Segmentation; Science and Engineering Institute; Journal of Automation and Control Engineering; 3; 6; 4-2015; 480-486 2301-3702 2325-7415 |
url |
http://hdl.handle.net/11336/12571 |
identifier_str_mv |
Jordan, Mario Alberto; Trabes, Emanuel; An Adaptive Vision-based Sensor for Underwater Line Detection Employing Shape and Color Image Segmentation; Science and Engineering Institute; Journal of Automation and Control Engineering; 3; 6; 4-2015; 480-486 2301-3702 2325-7415 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.joace.org/index.php?m=content&c=index&a=show&catid=50&id=278 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Science and Engineering Institute |
publisher.none.fl_str_mv |
Science and Engineering Institute |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846082793281421312 |
score |
13.22299 |