Robust Adaptive Predictive Fault-Tolerant Control Integrated to a Fault-Detection System Applied to a Nonlinear Chemical Process
- Autores
- Zumoffen, David Alejandro Ramon; Basualdo, Marta Susana; Jordan, Mario Alberto; Ceccatto, Hermenegildo A.
- Año de publicación
- 2007
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Most of the control schemes for chemical plants are developed under the assumption that the sensors and the actuators are free from faults. However, the occurrence of faults will cause degradation in the closed-loop performance, having an impact on safety, productivity, and plant economy. In this work, the main novelty is given by the enhancement produced through the integration of the fault detection and identification (FDI) system over a robust adaptive predictive control (RAPC) strategy specially thought to turn it as a fault- tolerant control (FTC) scheme. Additionally, the FDI itself is original because of the sensor and actuator faults treatment. The biases in sensors are detected and quantified by using wavelet decomposition and the extra delays in actuators by applying online identification techniques to appropriately modify the controller action. It is important to remark that the extra time delay, detected particularly at the actuators, is a problem that occurs frequently in practice; however, the academic community has mostly omitted it up to now. This methodology can improve the overall performance for nonlinear stable plants because the FDI is specifically designed as a complement of those aspects that RAPC cannot handle at all. The control technique involves a commutation of a linear time-varying robust filter in the feedback path of the control loop in synchronization with an adaptive predictive controller. Through simulation studies of a continuous stirred tank reactor (CSTR) with jacket, where the integration between FDI and FTC has been implemented, it can be shown that the proposed methodology leads to significant improvement in comparison with the same control scheme without FDI, particularly when the fault magnitude increases.
Fil: Zumoffen, David Alejandro Ramon. Universidad Tecnológica Nacional; Argentina
Fil: Basualdo, Marta Susana. Universidad Tecnológica Nacional; Argentina
Fil: Jordan, Mario Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto Argentino de Oceanografía. Universidad Nacional del Sur. Instituto Argentino de Oceanografía; Argentina
Fil: Ceccatto, Hermenegildo A.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/30600
Ver los metadatos del registro completo
id |
CONICETDig_b1bf7405a082f3006731125ddce28e77 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/30600 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Robust Adaptive Predictive Fault-Tolerant Control Integrated to a Fault-Detection System Applied to a Nonlinear Chemical ProcessZumoffen, David Alejandro RamonBasualdo, Marta SusanaJordan, Mario AlbertoCeccatto, Hermenegildo A.https://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2Most of the control schemes for chemical plants are developed under the assumption that the sensors and the actuators are free from faults. However, the occurrence of faults will cause degradation in the closed-loop performance, having an impact on safety, productivity, and plant economy. In this work, the main novelty is given by the enhancement produced through the integration of the fault detection and identification (FDI) system over a robust adaptive predictive control (RAPC) strategy specially thought to turn it as a fault- tolerant control (FTC) scheme. Additionally, the FDI itself is original because of the sensor and actuator faults treatment. The biases in sensors are detected and quantified by using wavelet decomposition and the extra delays in actuators by applying online identification techniques to appropriately modify the controller action. It is important to remark that the extra time delay, detected particularly at the actuators, is a problem that occurs frequently in practice; however, the academic community has mostly omitted it up to now. This methodology can improve the overall performance for nonlinear stable plants because the FDI is specifically designed as a complement of those aspects that RAPC cannot handle at all. The control technique involves a commutation of a linear time-varying robust filter in the feedback path of the control loop in synchronization with an adaptive predictive controller. Through simulation studies of a continuous stirred tank reactor (CSTR) with jacket, where the integration between FDI and FTC has been implemented, it can be shown that the proposed methodology leads to significant improvement in comparison with the same control scheme without FDI, particularly when the fault magnitude increases.Fil: Zumoffen, David Alejandro Ramon. Universidad Tecnológica Nacional; ArgentinaFil: Basualdo, Marta Susana. Universidad Tecnológica Nacional; ArgentinaFil: Jordan, Mario Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto Argentino de Oceanografía. Universidad Nacional del Sur. Instituto Argentino de Oceanografía; ArgentinaFil: Ceccatto, Hermenegildo A.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; ArgentinaAmerican Chemical Society2007-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/30600Zumoffen, David Alejandro Ramon; Basualdo, Marta Susana; Jordan, Mario Alberto; Ceccatto, Hermenegildo A.; Robust Adaptive Predictive Fault-Tolerant Control Integrated to a Fault-Detection System Applied to a Nonlinear Chemical Process; American Chemical Society; Industrial & Engineering Chemical Research; 22; 12-2007; 7152-71630888-5885CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://pubs.acs.org/journal/iecredinfo:eu-repo/semantics/altIdentifier/doi/10.1021/ie070019binfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:33:37Zoai:ri.conicet.gov.ar:11336/30600instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:33:37.766CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Robust Adaptive Predictive Fault-Tolerant Control Integrated to a Fault-Detection System Applied to a Nonlinear Chemical Process |
title |
Robust Adaptive Predictive Fault-Tolerant Control Integrated to a Fault-Detection System Applied to a Nonlinear Chemical Process |
spellingShingle |
Robust Adaptive Predictive Fault-Tolerant Control Integrated to a Fault-Detection System Applied to a Nonlinear Chemical Process Zumoffen, David Alejandro Ramon |
title_short |
Robust Adaptive Predictive Fault-Tolerant Control Integrated to a Fault-Detection System Applied to a Nonlinear Chemical Process |
title_full |
Robust Adaptive Predictive Fault-Tolerant Control Integrated to a Fault-Detection System Applied to a Nonlinear Chemical Process |
title_fullStr |
Robust Adaptive Predictive Fault-Tolerant Control Integrated to a Fault-Detection System Applied to a Nonlinear Chemical Process |
title_full_unstemmed |
Robust Adaptive Predictive Fault-Tolerant Control Integrated to a Fault-Detection System Applied to a Nonlinear Chemical Process |
title_sort |
Robust Adaptive Predictive Fault-Tolerant Control Integrated to a Fault-Detection System Applied to a Nonlinear Chemical Process |
dc.creator.none.fl_str_mv |
Zumoffen, David Alejandro Ramon Basualdo, Marta Susana Jordan, Mario Alberto Ceccatto, Hermenegildo A. |
author |
Zumoffen, David Alejandro Ramon |
author_facet |
Zumoffen, David Alejandro Ramon Basualdo, Marta Susana Jordan, Mario Alberto Ceccatto, Hermenegildo A. |
author_role |
author |
author2 |
Basualdo, Marta Susana Jordan, Mario Alberto Ceccatto, Hermenegildo A. |
author2_role |
author author author |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.2 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
Most of the control schemes for chemical plants are developed under the assumption that the sensors and the actuators are free from faults. However, the occurrence of faults will cause degradation in the closed-loop performance, having an impact on safety, productivity, and plant economy. In this work, the main novelty is given by the enhancement produced through the integration of the fault detection and identification (FDI) system over a robust adaptive predictive control (RAPC) strategy specially thought to turn it as a fault- tolerant control (FTC) scheme. Additionally, the FDI itself is original because of the sensor and actuator faults treatment. The biases in sensors are detected and quantified by using wavelet decomposition and the extra delays in actuators by applying online identification techniques to appropriately modify the controller action. It is important to remark that the extra time delay, detected particularly at the actuators, is a problem that occurs frequently in practice; however, the academic community has mostly omitted it up to now. This methodology can improve the overall performance for nonlinear stable plants because the FDI is specifically designed as a complement of those aspects that RAPC cannot handle at all. The control technique involves a commutation of a linear time-varying robust filter in the feedback path of the control loop in synchronization with an adaptive predictive controller. Through simulation studies of a continuous stirred tank reactor (CSTR) with jacket, where the integration between FDI and FTC has been implemented, it can be shown that the proposed methodology leads to significant improvement in comparison with the same control scheme without FDI, particularly when the fault magnitude increases. Fil: Zumoffen, David Alejandro Ramon. Universidad Tecnológica Nacional; Argentina Fil: Basualdo, Marta Susana. Universidad Tecnológica Nacional; Argentina Fil: Jordan, Mario Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto Argentino de Oceanografía. Universidad Nacional del Sur. Instituto Argentino de Oceanografía; Argentina Fil: Ceccatto, Hermenegildo A.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina |
description |
Most of the control schemes for chemical plants are developed under the assumption that the sensors and the actuators are free from faults. However, the occurrence of faults will cause degradation in the closed-loop performance, having an impact on safety, productivity, and plant economy. In this work, the main novelty is given by the enhancement produced through the integration of the fault detection and identification (FDI) system over a robust adaptive predictive control (RAPC) strategy specially thought to turn it as a fault- tolerant control (FTC) scheme. Additionally, the FDI itself is original because of the sensor and actuator faults treatment. The biases in sensors are detected and quantified by using wavelet decomposition and the extra delays in actuators by applying online identification techniques to appropriately modify the controller action. It is important to remark that the extra time delay, detected particularly at the actuators, is a problem that occurs frequently in practice; however, the academic community has mostly omitted it up to now. This methodology can improve the overall performance for nonlinear stable plants because the FDI is specifically designed as a complement of those aspects that RAPC cannot handle at all. The control technique involves a commutation of a linear time-varying robust filter in the feedback path of the control loop in synchronization with an adaptive predictive controller. Through simulation studies of a continuous stirred tank reactor (CSTR) with jacket, where the integration between FDI and FTC has been implemented, it can be shown that the proposed methodology leads to significant improvement in comparison with the same control scheme without FDI, particularly when the fault magnitude increases. |
publishDate |
2007 |
dc.date.none.fl_str_mv |
2007-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/30600 Zumoffen, David Alejandro Ramon; Basualdo, Marta Susana; Jordan, Mario Alberto; Ceccatto, Hermenegildo A.; Robust Adaptive Predictive Fault-Tolerant Control Integrated to a Fault-Detection System Applied to a Nonlinear Chemical Process; American Chemical Society; Industrial & Engineering Chemical Research; 22; 12-2007; 7152-7163 0888-5885 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/30600 |
identifier_str_mv |
Zumoffen, David Alejandro Ramon; Basualdo, Marta Susana; Jordan, Mario Alberto; Ceccatto, Hermenegildo A.; Robust Adaptive Predictive Fault-Tolerant Control Integrated to a Fault-Detection System Applied to a Nonlinear Chemical Process; American Chemical Society; Industrial & Engineering Chemical Research; 22; 12-2007; 7152-7163 0888-5885 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://pubs.acs.org/journal/iecred info:eu-repo/semantics/altIdentifier/doi/10.1021/ie070019b |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Chemical Society |
publisher.none.fl_str_mv |
American Chemical Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613034890231808 |
score |
13.070432 |