Quantitative model for the generic 3D shape of ICMEs at 1 AU

Autores
Démoulin, Pascal; Janvier, M.; Masías Meza, Jimmy Joel; Dasso, Sergio Ricardo
Año de publicación
2016
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Context. Interplanetary imagers provide 2D projected views of the densest plasma parts of interplanetary coronal mass ejections (ICMEs), while in situ measurements provide magnetic field and plasma parameter measurements along the spacecraft trajectory, that is, along a 1D cut. The data therefore only give a partial view of the 3D structures of ICMEs. Aims. By studying a large number of ICMEs, crossed at different distances from their apex, we develop statistical methods to obtain a quantitative generic 3D shape of ICMEs. Methods. In a first approach we theoretically obtained the expected statistical distribution of the shock-normal orientation from assuming simple models of 3D shock shapes, including distorted profiles, and compared their compatibility with observed distributions. In a second approach we used the shock normal and the flux rope axis orientations together with the impact parameter to provide statistical information across the spacecraft trajectory. Results. The study of different 3D shock models shows that the observations are compatible with a shock that is symmetric around the Sun-apex line as well as with an asymmetry up to an aspect ratio of around 3. Moreover, flat or dipped shock surfaces near their apex can only be rare cases. Next, the sheath thickness and the ICME velocity have no global trend along the ICME front. Finally, regrouping all these new results and those of our previous articles, we provide a quantitative ICME generic 3D shape, including the global shape of the shock, the sheath, and the flux rope. Conclusions. The obtained quantitative generic ICME shape will have implications for several aims. For example, it constrains the output of typical ICME numerical simulations. It is also a base for studying the transport of high-energy solar and cosmic particles during an ICME propagation as well as for modeling and forecasting space weather conditions near Earth.
Fil: Démoulin, Pascal. Centre National de la Recherche Scientifique. Observatoire de Paris; Francia
Fil: Janvier, M.. Universite Paris Sud; Francia
Fil: Masías Meza, Jimmy Joel. Universidad de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Dasso, Sergio Ricardo. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentina
Materia
SOLAR-TERRESTRIAL RELATIONS
SUN: CORONAL MASS EJECTIONS (CMES)
SUN: HELIOSPHERE
SUN: MAGNETIC FIELDS
Nivel de accesibilidad
acceso embargado
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/18180

id CONICETDig_b1694f741c2e8ac58f57de752699102c
oai_identifier_str oai:ri.conicet.gov.ar:11336/18180
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Quantitative model for the generic 3D shape of ICMEs at 1 AUDémoulin, PascalJanvier, M.Masías Meza, Jimmy JoelDasso, Sergio RicardoSOLAR-TERRESTRIAL RELATIONSSUN: CORONAL MASS EJECTIONS (CMES)SUN: HELIOSPHERESUN: MAGNETIC FIELDShttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Context. Interplanetary imagers provide 2D projected views of the densest plasma parts of interplanetary coronal mass ejections (ICMEs), while in situ measurements provide magnetic field and plasma parameter measurements along the spacecraft trajectory, that is, along a 1D cut. The data therefore only give a partial view of the 3D structures of ICMEs. Aims. By studying a large number of ICMEs, crossed at different distances from their apex, we develop statistical methods to obtain a quantitative generic 3D shape of ICMEs. Methods. In a first approach we theoretically obtained the expected statistical distribution of the shock-normal orientation from assuming simple models of 3D shock shapes, including distorted profiles, and compared their compatibility with observed distributions. In a second approach we used the shock normal and the flux rope axis orientations together with the impact parameter to provide statistical information across the spacecraft trajectory. Results. The study of different 3D shock models shows that the observations are compatible with a shock that is symmetric around the Sun-apex line as well as with an asymmetry up to an aspect ratio of around 3. Moreover, flat or dipped shock surfaces near their apex can only be rare cases. Next, the sheath thickness and the ICME velocity have no global trend along the ICME front. Finally, regrouping all these new results and those of our previous articles, we provide a quantitative ICME generic 3D shape, including the global shape of the shock, the sheath, and the flux rope. Conclusions. The obtained quantitative generic ICME shape will have implications for several aims. For example, it constrains the output of typical ICME numerical simulations. It is also a base for studying the transport of high-energy solar and cosmic particles during an ICME propagation as well as for modeling and forecasting space weather conditions near Earth.Fil: Démoulin, Pascal. Centre National de la Recherche Scientifique. Observatoire de Paris; FranciaFil: Janvier, M.. Universite Paris Sud; FranciaFil: Masías Meza, Jimmy Joel. Universidad de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Dasso, Sergio Ricardo. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; ArgentinaEdp Sciences2016-11info:eu-repo/date/embargoEnd/2017-11-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/18180Démoulin, Pascal; Janvier, M.; Masías Meza, Jimmy Joel; Dasso, Sergio Ricardo; Quantitative model for the generic 3D shape of ICMEs at 1 AU; Edp Sciences; Astronomy And Astrophysics; 595; 19; 11-2016; 1-140004-6361CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1051/0004-6361/201628164info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1608.08550info:eu-repo/semantics/altIdentifier/url/https://www.aanda.org/articles/aa/abs/2016/11/aa28164-16/aa28164-16.htmlinfo:eu-repo/semantics/embargoedAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:56:22Zoai:ri.conicet.gov.ar:11336/18180instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:56:22.432CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Quantitative model for the generic 3D shape of ICMEs at 1 AU
title Quantitative model for the generic 3D shape of ICMEs at 1 AU
spellingShingle Quantitative model for the generic 3D shape of ICMEs at 1 AU
Démoulin, Pascal
SOLAR-TERRESTRIAL RELATIONS
SUN: CORONAL MASS EJECTIONS (CMES)
SUN: HELIOSPHERE
SUN: MAGNETIC FIELDS
title_short Quantitative model for the generic 3D shape of ICMEs at 1 AU
title_full Quantitative model for the generic 3D shape of ICMEs at 1 AU
title_fullStr Quantitative model for the generic 3D shape of ICMEs at 1 AU
title_full_unstemmed Quantitative model for the generic 3D shape of ICMEs at 1 AU
title_sort Quantitative model for the generic 3D shape of ICMEs at 1 AU
dc.creator.none.fl_str_mv Démoulin, Pascal
Janvier, M.
Masías Meza, Jimmy Joel
Dasso, Sergio Ricardo
author Démoulin, Pascal
author_facet Démoulin, Pascal
Janvier, M.
Masías Meza, Jimmy Joel
Dasso, Sergio Ricardo
author_role author
author2 Janvier, M.
Masías Meza, Jimmy Joel
Dasso, Sergio Ricardo
author2_role author
author
author
dc.subject.none.fl_str_mv SOLAR-TERRESTRIAL RELATIONS
SUN: CORONAL MASS EJECTIONS (CMES)
SUN: HELIOSPHERE
SUN: MAGNETIC FIELDS
topic SOLAR-TERRESTRIAL RELATIONS
SUN: CORONAL MASS EJECTIONS (CMES)
SUN: HELIOSPHERE
SUN: MAGNETIC FIELDS
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Context. Interplanetary imagers provide 2D projected views of the densest plasma parts of interplanetary coronal mass ejections (ICMEs), while in situ measurements provide magnetic field and plasma parameter measurements along the spacecraft trajectory, that is, along a 1D cut. The data therefore only give a partial view of the 3D structures of ICMEs. Aims. By studying a large number of ICMEs, crossed at different distances from their apex, we develop statistical methods to obtain a quantitative generic 3D shape of ICMEs. Methods. In a first approach we theoretically obtained the expected statistical distribution of the shock-normal orientation from assuming simple models of 3D shock shapes, including distorted profiles, and compared their compatibility with observed distributions. In a second approach we used the shock normal and the flux rope axis orientations together with the impact parameter to provide statistical information across the spacecraft trajectory. Results. The study of different 3D shock models shows that the observations are compatible with a shock that is symmetric around the Sun-apex line as well as with an asymmetry up to an aspect ratio of around 3. Moreover, flat or dipped shock surfaces near their apex can only be rare cases. Next, the sheath thickness and the ICME velocity have no global trend along the ICME front. Finally, regrouping all these new results and those of our previous articles, we provide a quantitative ICME generic 3D shape, including the global shape of the shock, the sheath, and the flux rope. Conclusions. The obtained quantitative generic ICME shape will have implications for several aims. For example, it constrains the output of typical ICME numerical simulations. It is also a base for studying the transport of high-energy solar and cosmic particles during an ICME propagation as well as for modeling and forecasting space weather conditions near Earth.
Fil: Démoulin, Pascal. Centre National de la Recherche Scientifique. Observatoire de Paris; Francia
Fil: Janvier, M.. Universite Paris Sud; Francia
Fil: Masías Meza, Jimmy Joel. Universidad de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Dasso, Sergio Ricardo. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentina
description Context. Interplanetary imagers provide 2D projected views of the densest plasma parts of interplanetary coronal mass ejections (ICMEs), while in situ measurements provide magnetic field and plasma parameter measurements along the spacecraft trajectory, that is, along a 1D cut. The data therefore only give a partial view of the 3D structures of ICMEs. Aims. By studying a large number of ICMEs, crossed at different distances from their apex, we develop statistical methods to obtain a quantitative generic 3D shape of ICMEs. Methods. In a first approach we theoretically obtained the expected statistical distribution of the shock-normal orientation from assuming simple models of 3D shock shapes, including distorted profiles, and compared their compatibility with observed distributions. In a second approach we used the shock normal and the flux rope axis orientations together with the impact parameter to provide statistical information across the spacecraft trajectory. Results. The study of different 3D shock models shows that the observations are compatible with a shock that is symmetric around the Sun-apex line as well as with an asymmetry up to an aspect ratio of around 3. Moreover, flat or dipped shock surfaces near their apex can only be rare cases. Next, the sheath thickness and the ICME velocity have no global trend along the ICME front. Finally, regrouping all these new results and those of our previous articles, we provide a quantitative ICME generic 3D shape, including the global shape of the shock, the sheath, and the flux rope. Conclusions. The obtained quantitative generic ICME shape will have implications for several aims. For example, it constrains the output of typical ICME numerical simulations. It is also a base for studying the transport of high-energy solar and cosmic particles during an ICME propagation as well as for modeling and forecasting space weather conditions near Earth.
publishDate 2016
dc.date.none.fl_str_mv 2016-11
info:eu-repo/date/embargoEnd/2017-11-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/18180
Démoulin, Pascal; Janvier, M.; Masías Meza, Jimmy Joel; Dasso, Sergio Ricardo; Quantitative model for the generic 3D shape of ICMEs at 1 AU; Edp Sciences; Astronomy And Astrophysics; 595; 19; 11-2016; 1-14
0004-6361
CONICET Digital
CONICET
url http://hdl.handle.net/11336/18180
identifier_str_mv Démoulin, Pascal; Janvier, M.; Masías Meza, Jimmy Joel; Dasso, Sergio Ricardo; Quantitative model for the generic 3D shape of ICMEs at 1 AU; Edp Sciences; Astronomy And Astrophysics; 595; 19; 11-2016; 1-14
0004-6361
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1051/0004-6361/201628164
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1608.08550
info:eu-repo/semantics/altIdentifier/url/https://www.aanda.org/articles/aa/abs/2016/11/aa28164-16/aa28164-16.html
dc.rights.none.fl_str_mv info:eu-repo/semantics/embargoedAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv embargoedAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Edp Sciences
publisher.none.fl_str_mv Edp Sciences
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613693595189248
score 13.070432