Entanglement and Generalized Berry Geometrical Phases in Quantum Gravity
- Autores
- Cirilo, Diego Julio; Sanchez, Norma Graciela
- Año de publicación
- 2024
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- A new formalism is introduced that makes it possible to elucidate the physical and geometric content of quantum space–time. It is based on the Minimum Group Representation Principle (MGRP). Within this framework, new results for entanglement and geometrical/topologicalphases are found and implemented in cosmological and black hole space–times. Our main resultshere are as follows: (i) We find the Berry phases for inflation and for the cosmological perturbationsand express them in terms of the observables, such as the spectral scalar and tensor indices, nS and nT, and the tensor-to-scalar ratio r. The Berry phase for de Sitter inflation is imaginary with thesign describing the exponential acceleration. (ii) The pure entangled states in the minimum group(metaplectic) Mp(n) representation for quantum de Sitter space–time and black holes are found.(iii) For entanglement, the relation between the Schmidt type representation and the physical states of the Mp(n) group is found: This is a new non-diagonal coherent state representation complementary to the known Sudarshan diagonal one. (iv) Mean value generators of Mp(2) are related to the adiabatic invariant and topological charge of the space–time, (matrix element of the transition −∞ < t < ∞). (v) The basic even and odd n-sectors of the Hilbert space are intrinsic to the quantum space–time and its discrete levels (in particular, continuum for n → ∞), they do not require any extrinsic generation process such as the standard Schrodinger cat states, and are entangled. (vi) The gravity or cosmological on one side and another of the Planck scale are entangled. Examples: The quantum primordial transPlanckian de Sitter vacuum and the classical late de Sitter vacuum today; the central quantum gravity region and the external classical gravity region of black holes. The classical and quantum dual gravity regions of the space–time are entangled. (vii) The general classical-quantum gravity duality is associated with the Metaplectic Mp(n) group symmetry which provides the complete full covering of the phase space and of the quantum space–time mapped from it.
Fil: Cirilo, Diego Julio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física del Plasma. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física del Plasma; Argentina
Fil: Sanchez, Norma Graciela. Sorbonne University; Francia - Materia
-
QUANTUM PHYSICS
QUANTUM INFORMATION
QUANTUM GRAVITY
SYMMETRY GROUPS
TRANSPLANCKIAN PHYSICS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/263557
Ver los metadatos del registro completo
id |
CONICETDig_b063c532ec63479eee166a103c4d8ec2 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/263557 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Entanglement and Generalized Berry Geometrical Phases in Quantum GravityCirilo, Diego JulioSanchez, Norma GracielaQUANTUM PHYSICSQUANTUM INFORMATIONQUANTUM GRAVITYSYMMETRY GROUPSTRANSPLANCKIAN PHYSICShttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1https://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1https://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1A new formalism is introduced that makes it possible to elucidate the physical and geometric content of quantum space–time. It is based on the Minimum Group Representation Principle (MGRP). Within this framework, new results for entanglement and geometrical/topologicalphases are found and implemented in cosmological and black hole space–times. Our main resultshere are as follows: (i) We find the Berry phases for inflation and for the cosmological perturbationsand express them in terms of the observables, such as the spectral scalar and tensor indices, nS and nT, and the tensor-to-scalar ratio r. The Berry phase for de Sitter inflation is imaginary with thesign describing the exponential acceleration. (ii) The pure entangled states in the minimum group(metaplectic) Mp(n) representation for quantum de Sitter space–time and black holes are found.(iii) For entanglement, the relation between the Schmidt type representation and the physical states of the Mp(n) group is found: This is a new non-diagonal coherent state representation complementary to the known Sudarshan diagonal one. (iv) Mean value generators of Mp(2) are related to the adiabatic invariant and topological charge of the space–time, (matrix element of the transition −∞ < t < ∞). (v) The basic even and odd n-sectors of the Hilbert space are intrinsic to the quantum space–time and its discrete levels (in particular, continuum for n → ∞), they do not require any extrinsic generation process such as the standard Schrodinger cat states, and are entangled. (vi) The gravity or cosmological on one side and another of the Planck scale are entangled. Examples: The quantum primordial transPlanckian de Sitter vacuum and the classical late de Sitter vacuum today; the central quantum gravity region and the external classical gravity region of black holes. The classical and quantum dual gravity regions of the space–time are entangled. (vii) The general classical-quantum gravity duality is associated with the Metaplectic Mp(n) group symmetry which provides the complete full covering of the phase space and of the quantum space–time mapped from it.Fil: Cirilo, Diego Julio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física del Plasma. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física del Plasma; ArgentinaFil: Sanchez, Norma Graciela. Sorbonne University; FranciaMDPI2024-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/263557Cirilo, Diego Julio; Sanchez, Norma Graciela; Entanglement and Generalized Berry Geometrical Phases in Quantum Gravity; MDPI; Symmetry; 16; 8; 8-2024; 1-252073-8994CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2073-8994/16/8/1026info:eu-repo/semantics/altIdentifier/doi/10.3390/sym16081026info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:05:08Zoai:ri.conicet.gov.ar:11336/263557instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:05:08.991CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Entanglement and Generalized Berry Geometrical Phases in Quantum Gravity |
title |
Entanglement and Generalized Berry Geometrical Phases in Quantum Gravity |
spellingShingle |
Entanglement and Generalized Berry Geometrical Phases in Quantum Gravity Cirilo, Diego Julio QUANTUM PHYSICS QUANTUM INFORMATION QUANTUM GRAVITY SYMMETRY GROUPS TRANSPLANCKIAN PHYSICS |
title_short |
Entanglement and Generalized Berry Geometrical Phases in Quantum Gravity |
title_full |
Entanglement and Generalized Berry Geometrical Phases in Quantum Gravity |
title_fullStr |
Entanglement and Generalized Berry Geometrical Phases in Quantum Gravity |
title_full_unstemmed |
Entanglement and Generalized Berry Geometrical Phases in Quantum Gravity |
title_sort |
Entanglement and Generalized Berry Geometrical Phases in Quantum Gravity |
dc.creator.none.fl_str_mv |
Cirilo, Diego Julio Sanchez, Norma Graciela |
author |
Cirilo, Diego Julio |
author_facet |
Cirilo, Diego Julio Sanchez, Norma Graciela |
author_role |
author |
author2 |
Sanchez, Norma Graciela |
author2_role |
author |
dc.subject.none.fl_str_mv |
QUANTUM PHYSICS QUANTUM INFORMATION QUANTUM GRAVITY SYMMETRY GROUPS TRANSPLANCKIAN PHYSICS |
topic |
QUANTUM PHYSICS QUANTUM INFORMATION QUANTUM GRAVITY SYMMETRY GROUPS TRANSPLANCKIAN PHYSICS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
A new formalism is introduced that makes it possible to elucidate the physical and geometric content of quantum space–time. It is based on the Minimum Group Representation Principle (MGRP). Within this framework, new results for entanglement and geometrical/topologicalphases are found and implemented in cosmological and black hole space–times. Our main resultshere are as follows: (i) We find the Berry phases for inflation and for the cosmological perturbationsand express them in terms of the observables, such as the spectral scalar and tensor indices, nS and nT, and the tensor-to-scalar ratio r. The Berry phase for de Sitter inflation is imaginary with thesign describing the exponential acceleration. (ii) The pure entangled states in the minimum group(metaplectic) Mp(n) representation for quantum de Sitter space–time and black holes are found.(iii) For entanglement, the relation between the Schmidt type representation and the physical states of the Mp(n) group is found: This is a new non-diagonal coherent state representation complementary to the known Sudarshan diagonal one. (iv) Mean value generators of Mp(2) are related to the adiabatic invariant and topological charge of the space–time, (matrix element of the transition −∞ < t < ∞). (v) The basic even and odd n-sectors of the Hilbert space are intrinsic to the quantum space–time and its discrete levels (in particular, continuum for n → ∞), they do not require any extrinsic generation process such as the standard Schrodinger cat states, and are entangled. (vi) The gravity or cosmological on one side and another of the Planck scale are entangled. Examples: The quantum primordial transPlanckian de Sitter vacuum and the classical late de Sitter vacuum today; the central quantum gravity region and the external classical gravity region of black holes. The classical and quantum dual gravity regions of the space–time are entangled. (vii) The general classical-quantum gravity duality is associated with the Metaplectic Mp(n) group symmetry which provides the complete full covering of the phase space and of the quantum space–time mapped from it. Fil: Cirilo, Diego Julio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física del Plasma. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física del Plasma; Argentina Fil: Sanchez, Norma Graciela. Sorbonne University; Francia |
description |
A new formalism is introduced that makes it possible to elucidate the physical and geometric content of quantum space–time. It is based on the Minimum Group Representation Principle (MGRP). Within this framework, new results for entanglement and geometrical/topologicalphases are found and implemented in cosmological and black hole space–times. Our main resultshere are as follows: (i) We find the Berry phases for inflation and for the cosmological perturbationsand express them in terms of the observables, such as the spectral scalar and tensor indices, nS and nT, and the tensor-to-scalar ratio r. The Berry phase for de Sitter inflation is imaginary with thesign describing the exponential acceleration. (ii) The pure entangled states in the minimum group(metaplectic) Mp(n) representation for quantum de Sitter space–time and black holes are found.(iii) For entanglement, the relation between the Schmidt type representation and the physical states of the Mp(n) group is found: This is a new non-diagonal coherent state representation complementary to the known Sudarshan diagonal one. (iv) Mean value generators of Mp(2) are related to the adiabatic invariant and topological charge of the space–time, (matrix element of the transition −∞ < t < ∞). (v) The basic even and odd n-sectors of the Hilbert space are intrinsic to the quantum space–time and its discrete levels (in particular, continuum for n → ∞), they do not require any extrinsic generation process such as the standard Schrodinger cat states, and are entangled. (vi) The gravity or cosmological on one side and another of the Planck scale are entangled. Examples: The quantum primordial transPlanckian de Sitter vacuum and the classical late de Sitter vacuum today; the central quantum gravity region and the external classical gravity region of black holes. The classical and quantum dual gravity regions of the space–time are entangled. (vii) The general classical-quantum gravity duality is associated with the Metaplectic Mp(n) group symmetry which provides the complete full covering of the phase space and of the quantum space–time mapped from it. |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024-08 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/263557 Cirilo, Diego Julio; Sanchez, Norma Graciela; Entanglement and Generalized Berry Geometrical Phases in Quantum Gravity; MDPI; Symmetry; 16; 8; 8-2024; 1-25 2073-8994 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/263557 |
identifier_str_mv |
Cirilo, Diego Julio; Sanchez, Norma Graciela; Entanglement and Generalized Berry Geometrical Phases in Quantum Gravity; MDPI; Symmetry; 16; 8; 8-2024; 1-25 2073-8994 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2073-8994/16/8/1026 info:eu-repo/semantics/altIdentifier/doi/10.3390/sym16081026 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
MDPI |
publisher.none.fl_str_mv |
MDPI |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269895356579840 |
score |
13.13397 |