Entanglement and Generalized Berry Geometrical Phases in Quantum Gravity

Autores
Cirilo, Diego Julio; Sanchez, Norma Graciela
Año de publicación
2024
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
A new formalism is introduced that makes it possible to elucidate the physical and geometric content of quantum space–time. It is based on the Minimum Group Representation Principle (MGRP). Within this framework, new results for entanglement and geometrical/topologicalphases are found and implemented in cosmological and black hole space–times. Our main resultshere are as follows: (i) We find the Berry phases for inflation and for the cosmological perturbationsand express them in terms of the observables, such as the spectral scalar and tensor indices, nS and nT, and the tensor-to-scalar ratio r. The Berry phase for de Sitter inflation is imaginary with thesign describing the exponential acceleration. (ii) The pure entangled states in the minimum group(metaplectic) Mp(n) representation for quantum de Sitter space–time and black holes are found.(iii) For entanglement, the relation between the Schmidt type representation and the physical states of the Mp(n) group is found: This is a new non-diagonal coherent state representation complementary to the known Sudarshan diagonal one. (iv) Mean value generators of Mp(2) are related to the adiabatic invariant and topological charge of the space–time, (matrix element of the transition −∞ < t < ∞). (v) The basic even and odd n-sectors of the Hilbert space are intrinsic to the quantum space–time and its discrete levels (in particular, continuum for n → ∞), they do not require any extrinsic generation process such as the standard Schrodinger cat states, and are entangled. (vi) The gravity or cosmological on one side and another of the Planck scale are entangled. Examples: The quantum primordial transPlanckian de Sitter vacuum and the classical late de Sitter vacuum today; the central quantum gravity region and the external classical gravity region of black holes. The classical and quantum dual gravity regions of the space–time are entangled. (vii) The general classical-quantum gravity duality is associated with the Metaplectic Mp(n) group symmetry which provides the complete full covering of the phase space and of the quantum space–time mapped from it.
Fil: Cirilo, Diego Julio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física del Plasma. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física del Plasma; Argentina
Fil: Sanchez, Norma Graciela. Sorbonne University; Francia
Materia
QUANTUM PHYSICS
QUANTUM INFORMATION
QUANTUM GRAVITY
SYMMETRY GROUPS
TRANSPLANCKIAN PHYSICS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/263557

id CONICETDig_b063c532ec63479eee166a103c4d8ec2
oai_identifier_str oai:ri.conicet.gov.ar:11336/263557
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Entanglement and Generalized Berry Geometrical Phases in Quantum GravityCirilo, Diego JulioSanchez, Norma GracielaQUANTUM PHYSICSQUANTUM INFORMATIONQUANTUM GRAVITYSYMMETRY GROUPSTRANSPLANCKIAN PHYSICShttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1https://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1https://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1A new formalism is introduced that makes it possible to elucidate the physical and geometric content of quantum space–time. It is based on the Minimum Group Representation Principle (MGRP). Within this framework, new results for entanglement and geometrical/topologicalphases are found and implemented in cosmological and black hole space–times. Our main resultshere are as follows: (i) We find the Berry phases for inflation and for the cosmological perturbationsand express them in terms of the observables, such as the spectral scalar and tensor indices, nS and nT, and the tensor-to-scalar ratio r. The Berry phase for de Sitter inflation is imaginary with thesign describing the exponential acceleration. (ii) The pure entangled states in the minimum group(metaplectic) Mp(n) representation for quantum de Sitter space–time and black holes are found.(iii) For entanglement, the relation between the Schmidt type representation and the physical states of the Mp(n) group is found: This is a new non-diagonal coherent state representation complementary to the known Sudarshan diagonal one. (iv) Mean value generators of Mp(2) are related to the adiabatic invariant and topological charge of the space–time, (matrix element of the transition −∞ < t < ∞). (v) The basic even and odd n-sectors of the Hilbert space are intrinsic to the quantum space–time and its discrete levels (in particular, continuum for n → ∞), they do not require any extrinsic generation process such as the standard Schrodinger cat states, and are entangled. (vi) The gravity or cosmological on one side and another of the Planck scale are entangled. Examples: The quantum primordial transPlanckian de Sitter vacuum and the classical late de Sitter vacuum today; the central quantum gravity region and the external classical gravity region of black holes. The classical and quantum dual gravity regions of the space–time are entangled. (vii) The general classical-quantum gravity duality is associated with the Metaplectic Mp(n) group symmetry which provides the complete full covering of the phase space and of the quantum space–time mapped from it.Fil: Cirilo, Diego Julio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física del Plasma. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física del Plasma; ArgentinaFil: Sanchez, Norma Graciela. Sorbonne University; FranciaMDPI2024-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/263557Cirilo, Diego Julio; Sanchez, Norma Graciela; Entanglement and Generalized Berry Geometrical Phases in Quantum Gravity; MDPI; Symmetry; 16; 8; 8-2024; 1-252073-8994CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2073-8994/16/8/1026info:eu-repo/semantics/altIdentifier/doi/10.3390/sym16081026info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:05:08Zoai:ri.conicet.gov.ar:11336/263557instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:05:08.991CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Entanglement and Generalized Berry Geometrical Phases in Quantum Gravity
title Entanglement and Generalized Berry Geometrical Phases in Quantum Gravity
spellingShingle Entanglement and Generalized Berry Geometrical Phases in Quantum Gravity
Cirilo, Diego Julio
QUANTUM PHYSICS
QUANTUM INFORMATION
QUANTUM GRAVITY
SYMMETRY GROUPS
TRANSPLANCKIAN PHYSICS
title_short Entanglement and Generalized Berry Geometrical Phases in Quantum Gravity
title_full Entanglement and Generalized Berry Geometrical Phases in Quantum Gravity
title_fullStr Entanglement and Generalized Berry Geometrical Phases in Quantum Gravity
title_full_unstemmed Entanglement and Generalized Berry Geometrical Phases in Quantum Gravity
title_sort Entanglement and Generalized Berry Geometrical Phases in Quantum Gravity
dc.creator.none.fl_str_mv Cirilo, Diego Julio
Sanchez, Norma Graciela
author Cirilo, Diego Julio
author_facet Cirilo, Diego Julio
Sanchez, Norma Graciela
author_role author
author2 Sanchez, Norma Graciela
author2_role author
dc.subject.none.fl_str_mv QUANTUM PHYSICS
QUANTUM INFORMATION
QUANTUM GRAVITY
SYMMETRY GROUPS
TRANSPLANCKIAN PHYSICS
topic QUANTUM PHYSICS
QUANTUM INFORMATION
QUANTUM GRAVITY
SYMMETRY GROUPS
TRANSPLANCKIAN PHYSICS
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv A new formalism is introduced that makes it possible to elucidate the physical and geometric content of quantum space–time. It is based on the Minimum Group Representation Principle (MGRP). Within this framework, new results for entanglement and geometrical/topologicalphases are found and implemented in cosmological and black hole space–times. Our main resultshere are as follows: (i) We find the Berry phases for inflation and for the cosmological perturbationsand express them in terms of the observables, such as the spectral scalar and tensor indices, nS and nT, and the tensor-to-scalar ratio r. The Berry phase for de Sitter inflation is imaginary with thesign describing the exponential acceleration. (ii) The pure entangled states in the minimum group(metaplectic) Mp(n) representation for quantum de Sitter space–time and black holes are found.(iii) For entanglement, the relation between the Schmidt type representation and the physical states of the Mp(n) group is found: This is a new non-diagonal coherent state representation complementary to the known Sudarshan diagonal one. (iv) Mean value generators of Mp(2) are related to the adiabatic invariant and topological charge of the space–time, (matrix element of the transition −∞ < t < ∞). (v) The basic even and odd n-sectors of the Hilbert space are intrinsic to the quantum space–time and its discrete levels (in particular, continuum for n → ∞), they do not require any extrinsic generation process such as the standard Schrodinger cat states, and are entangled. (vi) The gravity or cosmological on one side and another of the Planck scale are entangled. Examples: The quantum primordial transPlanckian de Sitter vacuum and the classical late de Sitter vacuum today; the central quantum gravity region and the external classical gravity region of black holes. The classical and quantum dual gravity regions of the space–time are entangled. (vii) The general classical-quantum gravity duality is associated with the Metaplectic Mp(n) group symmetry which provides the complete full covering of the phase space and of the quantum space–time mapped from it.
Fil: Cirilo, Diego Julio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física del Plasma. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física del Plasma; Argentina
Fil: Sanchez, Norma Graciela. Sorbonne University; Francia
description A new formalism is introduced that makes it possible to elucidate the physical and geometric content of quantum space–time. It is based on the Minimum Group Representation Principle (MGRP). Within this framework, new results for entanglement and geometrical/topologicalphases are found and implemented in cosmological and black hole space–times. Our main resultshere are as follows: (i) We find the Berry phases for inflation and for the cosmological perturbationsand express them in terms of the observables, such as the spectral scalar and tensor indices, nS and nT, and the tensor-to-scalar ratio r. The Berry phase for de Sitter inflation is imaginary with thesign describing the exponential acceleration. (ii) The pure entangled states in the minimum group(metaplectic) Mp(n) representation for quantum de Sitter space–time and black holes are found.(iii) For entanglement, the relation between the Schmidt type representation and the physical states of the Mp(n) group is found: This is a new non-diagonal coherent state representation complementary to the known Sudarshan diagonal one. (iv) Mean value generators of Mp(2) are related to the adiabatic invariant and topological charge of the space–time, (matrix element of the transition −∞ < t < ∞). (v) The basic even and odd n-sectors of the Hilbert space are intrinsic to the quantum space–time and its discrete levels (in particular, continuum for n → ∞), they do not require any extrinsic generation process such as the standard Schrodinger cat states, and are entangled. (vi) The gravity or cosmological on one side and another of the Planck scale are entangled. Examples: The quantum primordial transPlanckian de Sitter vacuum and the classical late de Sitter vacuum today; the central quantum gravity region and the external classical gravity region of black holes. The classical and quantum dual gravity regions of the space–time are entangled. (vii) The general classical-quantum gravity duality is associated with the Metaplectic Mp(n) group symmetry which provides the complete full covering of the phase space and of the quantum space–time mapped from it.
publishDate 2024
dc.date.none.fl_str_mv 2024-08
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/263557
Cirilo, Diego Julio; Sanchez, Norma Graciela; Entanglement and Generalized Berry Geometrical Phases in Quantum Gravity; MDPI; Symmetry; 16; 8; 8-2024; 1-25
2073-8994
CONICET Digital
CONICET
url http://hdl.handle.net/11336/263557
identifier_str_mv Cirilo, Diego Julio; Sanchez, Norma Graciela; Entanglement and Generalized Berry Geometrical Phases in Quantum Gravity; MDPI; Symmetry; 16; 8; 8-2024; 1-25
2073-8994
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2073-8994/16/8/1026
info:eu-repo/semantics/altIdentifier/doi/10.3390/sym16081026
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv MDPI
publisher.none.fl_str_mv MDPI
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269895356579840
score 13.13397