Nitric Oxide and Frataxin: Two Players Contributing to Keep Cellular Iron Homeostasis.

Autores
Ramírez, Leonor; Zabaleta, Eduardo Julian; Lamattina, Lorenzo
Año de publicación
2009
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
BackgroundNitric oxide (NO) is a signalling and physiologically active molecule in animals, plants and bacteria. The specificity of the molecular mechanism(s) involved in transducing the NO signal within and between cells and tissues is still poorly understood. NO has been shown to be an emerging and potent signal molecule in plant growth, development and stress physiology. The NO donor S-nitrosoglutathion (GSNO) was shown to be a biologically active compound in plants and a candidate for NO storage and/or mobilization between plant tissues and cells. NO has been implicated as a central component in maintaining iron bioavailavility in plants. Scope and ConclusionsIron is an essential nutrient for almost all organisms. This review presents an overview of the functions of NO in iron metabolism in animals and discusses how NO production constitutes a key response in plant iron sensing and availability. In plants, NO drives downstream responses to both iron deficiency and iron overload. NO-mediated improvement of iron nutrition in plants growing under iron-deficient conditions represents a powerful tool to cope with soils displaying low iron availability. An interconversion between different redox forms based on the iron and NO status of the plant cells might be the core of a metabolic process driving plant iron homeostasis. Frataxin, a recently identified protein in plants, plays an important role in mitochondria biogenesis and in maintaining mitochondrial iron homeostasis. Evidence regarding the interaction between frataxin, NO and iron from analysis of frataxin knock-down Arabidopsis thaliana mutants is reviewed and discussed.
Fil: Ramírez, Leonor. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Biológicas. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Biológicas; Argentina
Fil: Zabaleta, Eduardo Julian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Biológicas. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Biológicas; Argentina
Fil: Lamattina, Lorenzo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Biológicas. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Biológicas; Argentina
Materia
DINITROSYL IRON COMPLEXES
FRATAXIN
IRON HOMEOSTASIS
NITRIC OXIDE
OXIDATIVE STRESS
STRATEGY I
STRATEGY II
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/133980

id CONICETDig_afd440880fddc87d2c15903ef8722783
oai_identifier_str oai:ri.conicet.gov.ar:11336/133980
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Nitric Oxide and Frataxin: Two Players Contributing to Keep Cellular Iron Homeostasis.Ramírez, LeonorZabaleta, Eduardo JulianLamattina, LorenzoDINITROSYL IRON COMPLEXESFRATAXINIRON HOMEOSTASISNITRIC OXIDEOXIDATIVE STRESSSTRATEGY ISTRATEGY IIhttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1BackgroundNitric oxide (NO) is a signalling and physiologically active molecule in animals, plants and bacteria. The specificity of the molecular mechanism(s) involved in transducing the NO signal within and between cells and tissues is still poorly understood. NO has been shown to be an emerging and potent signal molecule in plant growth, development and stress physiology. The NO donor S-nitrosoglutathion (GSNO) was shown to be a biologically active compound in plants and a candidate for NO storage and/or mobilization between plant tissues and cells. NO has been implicated as a central component in maintaining iron bioavailavility in plants. Scope and ConclusionsIron is an essential nutrient for almost all organisms. This review presents an overview of the functions of NO in iron metabolism in animals and discusses how NO production constitutes a key response in plant iron sensing and availability. In plants, NO drives downstream responses to both iron deficiency and iron overload. NO-mediated improvement of iron nutrition in plants growing under iron-deficient conditions represents a powerful tool to cope with soils displaying low iron availability. An interconversion between different redox forms based on the iron and NO status of the plant cells might be the core of a metabolic process driving plant iron homeostasis. Frataxin, a recently identified protein in plants, plays an important role in mitochondria biogenesis and in maintaining mitochondrial iron homeostasis. Evidence regarding the interaction between frataxin, NO and iron from analysis of frataxin knock-down Arabidopsis thaliana mutants is reviewed and discussed.Fil: Ramírez, Leonor. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Biológicas. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Biológicas; ArgentinaFil: Zabaleta, Eduardo Julian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Biológicas. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Biológicas; ArgentinaFil: Lamattina, Lorenzo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Biológicas. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Biológicas; ArgentinaOxford University Press2009-06-25info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/133980Ramírez, Leonor; Zabaleta, Eduardo Julian; Lamattina, Lorenzo; Nitric Oxide and Frataxin: Two Players Contributing to Keep Cellular Iron Homeostasis.; Oxford University Press; Annals of Botany; 105; 5; 25-6-2009; 801-8100305-7364CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://academic.oup.com/aob/article/105/5/801/179299info:eu-repo/semantics/altIdentifier/doi/10.1093/aob/mcp147info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:20:27Zoai:ri.conicet.gov.ar:11336/133980instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:20:28.291CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Nitric Oxide and Frataxin: Two Players Contributing to Keep Cellular Iron Homeostasis.
title Nitric Oxide and Frataxin: Two Players Contributing to Keep Cellular Iron Homeostasis.
spellingShingle Nitric Oxide and Frataxin: Two Players Contributing to Keep Cellular Iron Homeostasis.
Ramírez, Leonor
DINITROSYL IRON COMPLEXES
FRATAXIN
IRON HOMEOSTASIS
NITRIC OXIDE
OXIDATIVE STRESS
STRATEGY I
STRATEGY II
title_short Nitric Oxide and Frataxin: Two Players Contributing to Keep Cellular Iron Homeostasis.
title_full Nitric Oxide and Frataxin: Two Players Contributing to Keep Cellular Iron Homeostasis.
title_fullStr Nitric Oxide and Frataxin: Two Players Contributing to Keep Cellular Iron Homeostasis.
title_full_unstemmed Nitric Oxide and Frataxin: Two Players Contributing to Keep Cellular Iron Homeostasis.
title_sort Nitric Oxide and Frataxin: Two Players Contributing to Keep Cellular Iron Homeostasis.
dc.creator.none.fl_str_mv Ramírez, Leonor
Zabaleta, Eduardo Julian
Lamattina, Lorenzo
author Ramírez, Leonor
author_facet Ramírez, Leonor
Zabaleta, Eduardo Julian
Lamattina, Lorenzo
author_role author
author2 Zabaleta, Eduardo Julian
Lamattina, Lorenzo
author2_role author
author
dc.subject.none.fl_str_mv DINITROSYL IRON COMPLEXES
FRATAXIN
IRON HOMEOSTASIS
NITRIC OXIDE
OXIDATIVE STRESS
STRATEGY I
STRATEGY II
topic DINITROSYL IRON COMPLEXES
FRATAXIN
IRON HOMEOSTASIS
NITRIC OXIDE
OXIDATIVE STRESS
STRATEGY I
STRATEGY II
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.6
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv BackgroundNitric oxide (NO) is a signalling and physiologically active molecule in animals, plants and bacteria. The specificity of the molecular mechanism(s) involved in transducing the NO signal within and between cells and tissues is still poorly understood. NO has been shown to be an emerging and potent signal molecule in plant growth, development and stress physiology. The NO donor S-nitrosoglutathion (GSNO) was shown to be a biologically active compound in plants and a candidate for NO storage and/or mobilization between plant tissues and cells. NO has been implicated as a central component in maintaining iron bioavailavility in plants. Scope and ConclusionsIron is an essential nutrient for almost all organisms. This review presents an overview of the functions of NO in iron metabolism in animals and discusses how NO production constitutes a key response in plant iron sensing and availability. In plants, NO drives downstream responses to both iron deficiency and iron overload. NO-mediated improvement of iron nutrition in plants growing under iron-deficient conditions represents a powerful tool to cope with soils displaying low iron availability. An interconversion between different redox forms based on the iron and NO status of the plant cells might be the core of a metabolic process driving plant iron homeostasis. Frataxin, a recently identified protein in plants, plays an important role in mitochondria biogenesis and in maintaining mitochondrial iron homeostasis. Evidence regarding the interaction between frataxin, NO and iron from analysis of frataxin knock-down Arabidopsis thaliana mutants is reviewed and discussed.
Fil: Ramírez, Leonor. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Biológicas. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Biológicas; Argentina
Fil: Zabaleta, Eduardo Julian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Biológicas. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Biológicas; Argentina
Fil: Lamattina, Lorenzo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Biológicas. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Biológicas; Argentina
description BackgroundNitric oxide (NO) is a signalling and physiologically active molecule in animals, plants and bacteria. The specificity of the molecular mechanism(s) involved in transducing the NO signal within and between cells and tissues is still poorly understood. NO has been shown to be an emerging and potent signal molecule in plant growth, development and stress physiology. The NO donor S-nitrosoglutathion (GSNO) was shown to be a biologically active compound in plants and a candidate for NO storage and/or mobilization between plant tissues and cells. NO has been implicated as a central component in maintaining iron bioavailavility in plants. Scope and ConclusionsIron is an essential nutrient for almost all organisms. This review presents an overview of the functions of NO in iron metabolism in animals and discusses how NO production constitutes a key response in plant iron sensing and availability. In plants, NO drives downstream responses to both iron deficiency and iron overload. NO-mediated improvement of iron nutrition in plants growing under iron-deficient conditions represents a powerful tool to cope with soils displaying low iron availability. An interconversion between different redox forms based on the iron and NO status of the plant cells might be the core of a metabolic process driving plant iron homeostasis. Frataxin, a recently identified protein in plants, plays an important role in mitochondria biogenesis and in maintaining mitochondrial iron homeostasis. Evidence regarding the interaction between frataxin, NO and iron from analysis of frataxin knock-down Arabidopsis thaliana mutants is reviewed and discussed.
publishDate 2009
dc.date.none.fl_str_mv 2009-06-25
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/133980
Ramírez, Leonor; Zabaleta, Eduardo Julian; Lamattina, Lorenzo; Nitric Oxide and Frataxin: Two Players Contributing to Keep Cellular Iron Homeostasis.; Oxford University Press; Annals of Botany; 105; 5; 25-6-2009; 801-810
0305-7364
CONICET Digital
CONICET
url http://hdl.handle.net/11336/133980
identifier_str_mv Ramírez, Leonor; Zabaleta, Eduardo Julian; Lamattina, Lorenzo; Nitric Oxide and Frataxin: Two Players Contributing to Keep Cellular Iron Homeostasis.; Oxford University Press; Annals of Botany; 105; 5; 25-6-2009; 801-810
0305-7364
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://academic.oup.com/aob/article/105/5/801/179299
info:eu-repo/semantics/altIdentifier/doi/10.1093/aob/mcp147
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Oxford University Press
publisher.none.fl_str_mv Oxford University Press
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846082580305149952
score 13.22299