Water adsorption on phosphorous-carbide thin films
- Autores
- Broitman, E.; Furlan, A.; Gueorguiev, G.K.; Czigány, Zs.; Tarditi, Ana Maria; Gellman, Andrew J; Stafström, S.; Hultman, L.
- Año de publicación
- 2009
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Amorphous phosphorous-carbide films have been considered as a new tribological coating material with unique electrical properties. However, such CPx films have not found practical use until now because they tend to oxidize/hydrolyze rapidly when in contact with air. Recently, we demonstrated that CPx thin films with a fullerene-like structure can be deposited by magnetron sputtering, whereby the structural incorporation of P atoms induces the formation of strongly bent and inter-linked graphene planes. Here, we compare the uptake of water in fullerene-like phosphorous-carbide (FL-CPx) thin films with that in amorphous phosphorous-carbide (a-CPx), and amorphous carbon (a-C) thin films. Films of each material were deposited on quartz crystal substrates by reactive DC magnetron sputtering to a thickness in the range 100-300 nm. The film microstructure was characterized by X-ray photoelectron spectroscopy, and high resolution transmission electron microscopy. A quartz crystal microbalance placed in a vacuum chamber was used to measure their water adsorption. Measurements indicate that FL-CPx films adsorbed less water than the a-CPx and a-C ones. To provide additional insight into the atomic structure of defects in the FL-CPx and a-CPx compounds, we performed first-principles calculations within the framework of density functional theory. Cohesive energy comparison reveals that the energy cost formation for dangling bonds in different configurations is considerably higher in FL-CPx than for the amorphous films. Thus, the modeling confirms the experimental results that dangling bonds are less likely in FL-CPx than in a-CPx and a-C films.
Fil: Broitman, E.. University of Carnegie Mellon; Estados Unidos
Fil: Furlan, A.. Linköping University; Suecia
Fil: Gueorguiev, G.K.. Linköping University; Suecia
Fil: Czigány, Zs.. Research Institute For Technical Physics And Materials Science Hungarian Academy Of Sciences;
Fil: Tarditi, Ana Maria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera". Universidad Nacional del Litoral. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera"; Argentina
Fil: Gellman, Andrew J. University of Carnegie Mellon; Estados Unidos
Fil: Stafström, S.. Linköping University; Suecia
Fil: Hultman, L.. Linköping University; Suecia - Materia
-
Phosphorous Carbide
Dangling Bonds
Water Adsorption
Density Functional Theory - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/57036
Ver los metadatos del registro completo
id |
CONICETDig_af7d0bd9ac41cb8526843c8fb080c4e8 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/57036 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Water adsorption on phosphorous-carbide thin filmsBroitman, E.Furlan, A.Gueorguiev, G.K.Czigány, Zs.Tarditi, Ana MariaGellman, Andrew JStafström, S.Hultman, L.Phosphorous CarbideDangling BondsWater AdsorptionDensity Functional Theoryhttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1Amorphous phosphorous-carbide films have been considered as a new tribological coating material with unique electrical properties. However, such CPx films have not found practical use until now because they tend to oxidize/hydrolyze rapidly when in contact with air. Recently, we demonstrated that CPx thin films with a fullerene-like structure can be deposited by magnetron sputtering, whereby the structural incorporation of P atoms induces the formation of strongly bent and inter-linked graphene planes. Here, we compare the uptake of water in fullerene-like phosphorous-carbide (FL-CPx) thin films with that in amorphous phosphorous-carbide (a-CPx), and amorphous carbon (a-C) thin films. Films of each material were deposited on quartz crystal substrates by reactive DC magnetron sputtering to a thickness in the range 100-300 nm. The film microstructure was characterized by X-ray photoelectron spectroscopy, and high resolution transmission electron microscopy. A quartz crystal microbalance placed in a vacuum chamber was used to measure their water adsorption. Measurements indicate that FL-CPx films adsorbed less water than the a-CPx and a-C ones. To provide additional insight into the atomic structure of defects in the FL-CPx and a-CPx compounds, we performed first-principles calculations within the framework of density functional theory. Cohesive energy comparison reveals that the energy cost formation for dangling bonds in different configurations is considerably higher in FL-CPx than for the amorphous films. Thus, the modeling confirms the experimental results that dangling bonds are less likely in FL-CPx than in a-CPx and a-C films.Fil: Broitman, E.. University of Carnegie Mellon; Estados UnidosFil: Furlan, A.. Linköping University; SueciaFil: Gueorguiev, G.K.. Linköping University; SueciaFil: Czigány, Zs.. Research Institute For Technical Physics And Materials Science Hungarian Academy Of Sciences;Fil: Tarditi, Ana Maria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera". Universidad Nacional del Litoral. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera"; ArgentinaFil: Gellman, Andrew J. University of Carnegie Mellon; Estados UnidosFil: Stafström, S.. Linköping University; SueciaFil: Hultman, L.. Linköping University; SueciaElsevier Science Sa2009-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/57036Broitman, E.; Furlan, A.; Gueorguiev, G.K.; Czigány, Zs.; Tarditi, Ana Maria; et al.; Water adsorption on phosphorous-carbide thin films; Elsevier Science Sa; Surface and Coatings Technology; 204; 6-7; 12-2009; 1035-10390257-8972CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.surfcoat.2009.06.003info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:24:53Zoai:ri.conicet.gov.ar:11336/57036instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:24:53.501CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Water adsorption on phosphorous-carbide thin films |
title |
Water adsorption on phosphorous-carbide thin films |
spellingShingle |
Water adsorption on phosphorous-carbide thin films Broitman, E. Phosphorous Carbide Dangling Bonds Water Adsorption Density Functional Theory |
title_short |
Water adsorption on phosphorous-carbide thin films |
title_full |
Water adsorption on phosphorous-carbide thin films |
title_fullStr |
Water adsorption on phosphorous-carbide thin films |
title_full_unstemmed |
Water adsorption on phosphorous-carbide thin films |
title_sort |
Water adsorption on phosphorous-carbide thin films |
dc.creator.none.fl_str_mv |
Broitman, E. Furlan, A. Gueorguiev, G.K. Czigány, Zs. Tarditi, Ana Maria Gellman, Andrew J Stafström, S. Hultman, L. |
author |
Broitman, E. |
author_facet |
Broitman, E. Furlan, A. Gueorguiev, G.K. Czigány, Zs. Tarditi, Ana Maria Gellman, Andrew J Stafström, S. Hultman, L. |
author_role |
author |
author2 |
Furlan, A. Gueorguiev, G.K. Czigány, Zs. Tarditi, Ana Maria Gellman, Andrew J Stafström, S. Hultman, L. |
author2_role |
author author author author author author author |
dc.subject.none.fl_str_mv |
Phosphorous Carbide Dangling Bonds Water Adsorption Density Functional Theory |
topic |
Phosphorous Carbide Dangling Bonds Water Adsorption Density Functional Theory |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.4 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Amorphous phosphorous-carbide films have been considered as a new tribological coating material with unique electrical properties. However, such CPx films have not found practical use until now because they tend to oxidize/hydrolyze rapidly when in contact with air. Recently, we demonstrated that CPx thin films with a fullerene-like structure can be deposited by magnetron sputtering, whereby the structural incorporation of P atoms induces the formation of strongly bent and inter-linked graphene planes. Here, we compare the uptake of water in fullerene-like phosphorous-carbide (FL-CPx) thin films with that in amorphous phosphorous-carbide (a-CPx), and amorphous carbon (a-C) thin films. Films of each material were deposited on quartz crystal substrates by reactive DC magnetron sputtering to a thickness in the range 100-300 nm. The film microstructure was characterized by X-ray photoelectron spectroscopy, and high resolution transmission electron microscopy. A quartz crystal microbalance placed in a vacuum chamber was used to measure their water adsorption. Measurements indicate that FL-CPx films adsorbed less water than the a-CPx and a-C ones. To provide additional insight into the atomic structure of defects in the FL-CPx and a-CPx compounds, we performed first-principles calculations within the framework of density functional theory. Cohesive energy comparison reveals that the energy cost formation for dangling bonds in different configurations is considerably higher in FL-CPx than for the amorphous films. Thus, the modeling confirms the experimental results that dangling bonds are less likely in FL-CPx than in a-CPx and a-C films. Fil: Broitman, E.. University of Carnegie Mellon; Estados Unidos Fil: Furlan, A.. Linköping University; Suecia Fil: Gueorguiev, G.K.. Linköping University; Suecia Fil: Czigány, Zs.. Research Institute For Technical Physics And Materials Science Hungarian Academy Of Sciences; Fil: Tarditi, Ana Maria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera". Universidad Nacional del Litoral. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera"; Argentina Fil: Gellman, Andrew J. University of Carnegie Mellon; Estados Unidos Fil: Stafström, S.. Linköping University; Suecia Fil: Hultman, L.. Linköping University; Suecia |
description |
Amorphous phosphorous-carbide films have been considered as a new tribological coating material with unique electrical properties. However, such CPx films have not found practical use until now because they tend to oxidize/hydrolyze rapidly when in contact with air. Recently, we demonstrated that CPx thin films with a fullerene-like structure can be deposited by magnetron sputtering, whereby the structural incorporation of P atoms induces the formation of strongly bent and inter-linked graphene planes. Here, we compare the uptake of water in fullerene-like phosphorous-carbide (FL-CPx) thin films with that in amorphous phosphorous-carbide (a-CPx), and amorphous carbon (a-C) thin films. Films of each material were deposited on quartz crystal substrates by reactive DC magnetron sputtering to a thickness in the range 100-300 nm. The film microstructure was characterized by X-ray photoelectron spectroscopy, and high resolution transmission electron microscopy. A quartz crystal microbalance placed in a vacuum chamber was used to measure their water adsorption. Measurements indicate that FL-CPx films adsorbed less water than the a-CPx and a-C ones. To provide additional insight into the atomic structure of defects in the FL-CPx and a-CPx compounds, we performed first-principles calculations within the framework of density functional theory. Cohesive energy comparison reveals that the energy cost formation for dangling bonds in different configurations is considerably higher in FL-CPx than for the amorphous films. Thus, the modeling confirms the experimental results that dangling bonds are less likely in FL-CPx than in a-CPx and a-C films. |
publishDate |
2009 |
dc.date.none.fl_str_mv |
2009-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/57036 Broitman, E.; Furlan, A.; Gueorguiev, G.K.; Czigány, Zs.; Tarditi, Ana Maria; et al.; Water adsorption on phosphorous-carbide thin films; Elsevier Science Sa; Surface and Coatings Technology; 204; 6-7; 12-2009; 1035-1039 0257-8972 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/57036 |
identifier_str_mv |
Broitman, E.; Furlan, A.; Gueorguiev, G.K.; Czigány, Zs.; Tarditi, Ana Maria; et al.; Water adsorption on phosphorous-carbide thin films; Elsevier Science Sa; Surface and Coatings Technology; 204; 6-7; 12-2009; 1035-1039 0257-8972 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.surfcoat.2009.06.003 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science Sa |
publisher.none.fl_str_mv |
Elsevier Science Sa |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842981383012614144 |
score |
12.493442 |