Water adsorption on phosphorous-carbide thin films

Autores
Broitman, E.; Furlan, A.; Gueorguiev, G.K.; Czigány, Zs.; Tarditi, Ana Maria; Gellman, Andrew J; Stafström, S.; Hultman, L.
Año de publicación
2009
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Amorphous phosphorous-carbide films have been considered as a new tribological coating material with unique electrical properties. However, such CPx films have not found practical use until now because they tend to oxidize/hydrolyze rapidly when in contact with air. Recently, we demonstrated that CPx thin films with a fullerene-like structure can be deposited by magnetron sputtering, whereby the structural incorporation of P atoms induces the formation of strongly bent and inter-linked graphene planes. Here, we compare the uptake of water in fullerene-like phosphorous-carbide (FL-CPx) thin films with that in amorphous phosphorous-carbide (a-CPx), and amorphous carbon (a-C) thin films. Films of each material were deposited on quartz crystal substrates by reactive DC magnetron sputtering to a thickness in the range 100-300 nm. The film microstructure was characterized by X-ray photoelectron spectroscopy, and high resolution transmission electron microscopy. A quartz crystal microbalance placed in a vacuum chamber was used to measure their water adsorption. Measurements indicate that FL-CPx films adsorbed less water than the a-CPx and a-C ones. To provide additional insight into the atomic structure of defects in the FL-CPx and a-CPx compounds, we performed first-principles calculations within the framework of density functional theory. Cohesive energy comparison reveals that the energy cost formation for dangling bonds in different configurations is considerably higher in FL-CPx than for the amorphous films. Thus, the modeling confirms the experimental results that dangling bonds are less likely in FL-CPx than in a-CPx and a-C films.
Fil: Broitman, E.. University of Carnegie Mellon; Estados Unidos
Fil: Furlan, A.. Linköping University; Suecia
Fil: Gueorguiev, G.K.. Linköping University; Suecia
Fil: Czigány, Zs.. Research Institute For Technical Physics And Materials Science Hungarian Academy Of Sciences;
Fil: Tarditi, Ana Maria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera". Universidad Nacional del Litoral. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera"; Argentina
Fil: Gellman, Andrew J. University of Carnegie Mellon; Estados Unidos
Fil: Stafström, S.. Linköping University; Suecia
Fil: Hultman, L.. Linköping University; Suecia
Materia
Phosphorous Carbide
Dangling Bonds
Water Adsorption
Density Functional Theory
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/57036

id CONICETDig_af7d0bd9ac41cb8526843c8fb080c4e8
oai_identifier_str oai:ri.conicet.gov.ar:11336/57036
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Water adsorption on phosphorous-carbide thin filmsBroitman, E.Furlan, A.Gueorguiev, G.K.Czigány, Zs.Tarditi, Ana MariaGellman, Andrew JStafström, S.Hultman, L.Phosphorous CarbideDangling BondsWater AdsorptionDensity Functional Theoryhttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1Amorphous phosphorous-carbide films have been considered as a new tribological coating material with unique electrical properties. However, such CPx films have not found practical use until now because they tend to oxidize/hydrolyze rapidly when in contact with air. Recently, we demonstrated that CPx thin films with a fullerene-like structure can be deposited by magnetron sputtering, whereby the structural incorporation of P atoms induces the formation of strongly bent and inter-linked graphene planes. Here, we compare the uptake of water in fullerene-like phosphorous-carbide (FL-CPx) thin films with that in amorphous phosphorous-carbide (a-CPx), and amorphous carbon (a-C) thin films. Films of each material were deposited on quartz crystal substrates by reactive DC magnetron sputtering to a thickness in the range 100-300 nm. The film microstructure was characterized by X-ray photoelectron spectroscopy, and high resolution transmission electron microscopy. A quartz crystal microbalance placed in a vacuum chamber was used to measure their water adsorption. Measurements indicate that FL-CPx films adsorbed less water than the a-CPx and a-C ones. To provide additional insight into the atomic structure of defects in the FL-CPx and a-CPx compounds, we performed first-principles calculations within the framework of density functional theory. Cohesive energy comparison reveals that the energy cost formation for dangling bonds in different configurations is considerably higher in FL-CPx than for the amorphous films. Thus, the modeling confirms the experimental results that dangling bonds are less likely in FL-CPx than in a-CPx and a-C films.Fil: Broitman, E.. University of Carnegie Mellon; Estados UnidosFil: Furlan, A.. Linköping University; SueciaFil: Gueorguiev, G.K.. Linköping University; SueciaFil: Czigány, Zs.. Research Institute For Technical Physics And Materials Science Hungarian Academy Of Sciences;Fil: Tarditi, Ana Maria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera". Universidad Nacional del Litoral. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera"; ArgentinaFil: Gellman, Andrew J. University of Carnegie Mellon; Estados UnidosFil: Stafström, S.. Linköping University; SueciaFil: Hultman, L.. Linköping University; SueciaElsevier Science Sa2009-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/57036Broitman, E.; Furlan, A.; Gueorguiev, G.K.; Czigány, Zs.; Tarditi, Ana Maria; et al.; Water adsorption on phosphorous-carbide thin films; Elsevier Science Sa; Surface and Coatings Technology; 204; 6-7; 12-2009; 1035-10390257-8972CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.surfcoat.2009.06.003info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:24:53Zoai:ri.conicet.gov.ar:11336/57036instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:24:53.501CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Water adsorption on phosphorous-carbide thin films
title Water adsorption on phosphorous-carbide thin films
spellingShingle Water adsorption on phosphorous-carbide thin films
Broitman, E.
Phosphorous Carbide
Dangling Bonds
Water Adsorption
Density Functional Theory
title_short Water adsorption on phosphorous-carbide thin films
title_full Water adsorption on phosphorous-carbide thin films
title_fullStr Water adsorption on phosphorous-carbide thin films
title_full_unstemmed Water adsorption on phosphorous-carbide thin films
title_sort Water adsorption on phosphorous-carbide thin films
dc.creator.none.fl_str_mv Broitman, E.
Furlan, A.
Gueorguiev, G.K.
Czigány, Zs.
Tarditi, Ana Maria
Gellman, Andrew J
Stafström, S.
Hultman, L.
author Broitman, E.
author_facet Broitman, E.
Furlan, A.
Gueorguiev, G.K.
Czigány, Zs.
Tarditi, Ana Maria
Gellman, Andrew J
Stafström, S.
Hultman, L.
author_role author
author2 Furlan, A.
Gueorguiev, G.K.
Czigány, Zs.
Tarditi, Ana Maria
Gellman, Andrew J
Stafström, S.
Hultman, L.
author2_role author
author
author
author
author
author
author
dc.subject.none.fl_str_mv Phosphorous Carbide
Dangling Bonds
Water Adsorption
Density Functional Theory
topic Phosphorous Carbide
Dangling Bonds
Water Adsorption
Density Functional Theory
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.4
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Amorphous phosphorous-carbide films have been considered as a new tribological coating material with unique electrical properties. However, such CPx films have not found practical use until now because they tend to oxidize/hydrolyze rapidly when in contact with air. Recently, we demonstrated that CPx thin films with a fullerene-like structure can be deposited by magnetron sputtering, whereby the structural incorporation of P atoms induces the formation of strongly bent and inter-linked graphene planes. Here, we compare the uptake of water in fullerene-like phosphorous-carbide (FL-CPx) thin films with that in amorphous phosphorous-carbide (a-CPx), and amorphous carbon (a-C) thin films. Films of each material were deposited on quartz crystal substrates by reactive DC magnetron sputtering to a thickness in the range 100-300 nm. The film microstructure was characterized by X-ray photoelectron spectroscopy, and high resolution transmission electron microscopy. A quartz crystal microbalance placed in a vacuum chamber was used to measure their water adsorption. Measurements indicate that FL-CPx films adsorbed less water than the a-CPx and a-C ones. To provide additional insight into the atomic structure of defects in the FL-CPx and a-CPx compounds, we performed first-principles calculations within the framework of density functional theory. Cohesive energy comparison reveals that the energy cost formation for dangling bonds in different configurations is considerably higher in FL-CPx than for the amorphous films. Thus, the modeling confirms the experimental results that dangling bonds are less likely in FL-CPx than in a-CPx and a-C films.
Fil: Broitman, E.. University of Carnegie Mellon; Estados Unidos
Fil: Furlan, A.. Linköping University; Suecia
Fil: Gueorguiev, G.K.. Linköping University; Suecia
Fil: Czigány, Zs.. Research Institute For Technical Physics And Materials Science Hungarian Academy Of Sciences;
Fil: Tarditi, Ana Maria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera". Universidad Nacional del Litoral. Instituto de Investigaciones en Catálisis y Petroquímica "Ing. José Miguel Parera"; Argentina
Fil: Gellman, Andrew J. University of Carnegie Mellon; Estados Unidos
Fil: Stafström, S.. Linköping University; Suecia
Fil: Hultman, L.. Linköping University; Suecia
description Amorphous phosphorous-carbide films have been considered as a new tribological coating material with unique electrical properties. However, such CPx films have not found practical use until now because they tend to oxidize/hydrolyze rapidly when in contact with air. Recently, we demonstrated that CPx thin films with a fullerene-like structure can be deposited by magnetron sputtering, whereby the structural incorporation of P atoms induces the formation of strongly bent and inter-linked graphene planes. Here, we compare the uptake of water in fullerene-like phosphorous-carbide (FL-CPx) thin films with that in amorphous phosphorous-carbide (a-CPx), and amorphous carbon (a-C) thin films. Films of each material were deposited on quartz crystal substrates by reactive DC magnetron sputtering to a thickness in the range 100-300 nm. The film microstructure was characterized by X-ray photoelectron spectroscopy, and high resolution transmission electron microscopy. A quartz crystal microbalance placed in a vacuum chamber was used to measure their water adsorption. Measurements indicate that FL-CPx films adsorbed less water than the a-CPx and a-C ones. To provide additional insight into the atomic structure of defects in the FL-CPx and a-CPx compounds, we performed first-principles calculations within the framework of density functional theory. Cohesive energy comparison reveals that the energy cost formation for dangling bonds in different configurations is considerably higher in FL-CPx than for the amorphous films. Thus, the modeling confirms the experimental results that dangling bonds are less likely in FL-CPx than in a-CPx and a-C films.
publishDate 2009
dc.date.none.fl_str_mv 2009-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/57036
Broitman, E.; Furlan, A.; Gueorguiev, G.K.; Czigány, Zs.; Tarditi, Ana Maria; et al.; Water adsorption on phosphorous-carbide thin films; Elsevier Science Sa; Surface and Coatings Technology; 204; 6-7; 12-2009; 1035-1039
0257-8972
CONICET Digital
CONICET
url http://hdl.handle.net/11336/57036
identifier_str_mv Broitman, E.; Furlan, A.; Gueorguiev, G.K.; Czigány, Zs.; Tarditi, Ana Maria; et al.; Water adsorption on phosphorous-carbide thin films; Elsevier Science Sa; Surface and Coatings Technology; 204; 6-7; 12-2009; 1035-1039
0257-8972
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.surfcoat.2009.06.003
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier Science Sa
publisher.none.fl_str_mv Elsevier Science Sa
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842981383012614144
score 12.493442