Gravity driven flow for the precise control of hydrodynamic focusing

Autores
Minetti, Florencia; Olivares, María Laura; Berli, Claudio Luis Alberto
Año de publicación
2019
Idioma
inglés
Tipo de recurso
documento de conferencia
Estado
versión publicada
Descripción
Hydrodynamic focusing is a key operation in microfluidics, withapplications that range from cell sorting and counting to mixing and reactions.For most of these operations, both stability and precise handling of thefocused stream are essential. However, these requirements are hardly attainedwhen fluids are supplied by syringe pumps, due to the unavoidable fluctuationsassociated to the driving mechanical system, namely the stepper motor and thelead screw. As an alternative, this work presents a platform for controlledhydrodynamic focusing driven by gravity. In advance to previous works were theuse of hydrostatic pressure has been proposed, here we describe a mathematicalmodel to quantitatively handle the flow stream widths as a function of thefluid reservoir heights. The model enables a fine tuning of flow rates,provided the hydrodynamic resistance of the whole circuit is known.Focusing experiments were carried out at different flow rate ratios inPMMA/OCA film hybrid chips with slit microchannels forming cross-shapedintersections. Results were compared to those obtained when fluids are infusedby syringe pumps to the same chips. It is demonstrated that the gravity driven systemis successful for attaining highly stable and well-defined flow streams. Then,the crystallization of calcium carbonate was implemented in the gravity-drivensystemas example of application. The reaction take place at the interface ofco-flowing streams that transport the respective reactants, hence differentfinal products are attained for different reservoir heights. Apart fromenabling accurate fluid handling and stability, the model-controlled platformis highly versatile to design new experiments, as well as to assist theoperator in practice.
Fil: Minetti, Florencia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina
Fil: Olivares, María Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina
Fil: Berli, Claudio Luis Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina
II Brazil-Argentine Microfluidics Congress y V Congreso de Microfluídica Argentina
Córodoba
Argentina
Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía, Física y Computación
Materia
MICROFLUIDIC
HEDRODYNAMIC FOCUSING
GRAVITY DRIVEN FLOW
NANOPRECIPITATION
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/136259

id CONICETDig_af0d58061a78e9348724288aa62267c7
oai_identifier_str oai:ri.conicet.gov.ar:11336/136259
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Gravity driven flow for the precise control of hydrodynamic focusingMinetti, FlorenciaOlivares, María LauraBerli, Claudio Luis AlbertoMICROFLUIDICHEDRODYNAMIC FOCUSINGGRAVITY DRIVEN FLOWNANOPRECIPITATIONhttps://purl.org/becyt/ford/2.11https://purl.org/becyt/ford/2Hydrodynamic focusing is a key operation in microfluidics, withapplications that range from cell sorting and counting to mixing and reactions.For most of these operations, both stability and precise handling of thefocused stream are essential. However, these requirements are hardly attainedwhen fluids are supplied by syringe pumps, due to the unavoidable fluctuationsassociated to the driving mechanical system, namely the stepper motor and thelead screw. As an alternative, this work presents a platform for controlledhydrodynamic focusing driven by gravity. In advance to previous works were theuse of hydrostatic pressure has been proposed, here we describe a mathematicalmodel to quantitatively handle the flow stream widths as a function of thefluid reservoir heights. The model enables a fine tuning of flow rates,provided the hydrodynamic resistance of the whole circuit is known.Focusing experiments were carried out at different flow rate ratios inPMMA/OCA film hybrid chips with slit microchannels forming cross-shapedintersections. Results were compared to those obtained when fluids are infusedby syringe pumps to the same chips. It is demonstrated that the gravity driven systemis successful for attaining highly stable and well-defined flow streams. Then,the crystallization of calcium carbonate was implemented in the gravity-drivensystemas example of application. The reaction take place at the interface ofco-flowing streams that transport the respective reactants, hence differentfinal products are attained for different reservoir heights. Apart fromenabling accurate fluid handling and stability, the model-controlled platformis highly versatile to design new experiments, as well as to assist theoperator in practice.Fil: Minetti, Florencia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; ArgentinaFil: Olivares, María Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; ArgentinaFil: Berli, Claudio Luis Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; ArgentinaII Brazil-Argentine Microfluidics Congress y V Congreso de Microfluídica ArgentinaCórodobaArgentinaUniversidad Nacional de Córdoba. Facultad de Matemática, Astronomía, Física y ComputaciónUniversidad Nacional de Córdoba2019info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObjectCongresoBookhttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/136259Gravity driven flow for the precise control of hydrodynamic focusing; II Brazil-Argentine Microfluidics Congress y V Congreso de Microfluídica Argentina; Córodoba; Argentina; 2019978-987-779-009-2CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.mfarg.org/book-of-abstractsInternacionalinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:59:15Zoai:ri.conicet.gov.ar:11336/136259instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:59:15.688CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Gravity driven flow for the precise control of hydrodynamic focusing
title Gravity driven flow for the precise control of hydrodynamic focusing
spellingShingle Gravity driven flow for the precise control of hydrodynamic focusing
Minetti, Florencia
MICROFLUIDIC
HEDRODYNAMIC FOCUSING
GRAVITY DRIVEN FLOW
NANOPRECIPITATION
title_short Gravity driven flow for the precise control of hydrodynamic focusing
title_full Gravity driven flow for the precise control of hydrodynamic focusing
title_fullStr Gravity driven flow for the precise control of hydrodynamic focusing
title_full_unstemmed Gravity driven flow for the precise control of hydrodynamic focusing
title_sort Gravity driven flow for the precise control of hydrodynamic focusing
dc.creator.none.fl_str_mv Minetti, Florencia
Olivares, María Laura
Berli, Claudio Luis Alberto
author Minetti, Florencia
author_facet Minetti, Florencia
Olivares, María Laura
Berli, Claudio Luis Alberto
author_role author
author2 Olivares, María Laura
Berli, Claudio Luis Alberto
author2_role author
author
dc.subject.none.fl_str_mv MICROFLUIDIC
HEDRODYNAMIC FOCUSING
GRAVITY DRIVEN FLOW
NANOPRECIPITATION
topic MICROFLUIDIC
HEDRODYNAMIC FOCUSING
GRAVITY DRIVEN FLOW
NANOPRECIPITATION
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.11
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv Hydrodynamic focusing is a key operation in microfluidics, withapplications that range from cell sorting and counting to mixing and reactions.For most of these operations, both stability and precise handling of thefocused stream are essential. However, these requirements are hardly attainedwhen fluids are supplied by syringe pumps, due to the unavoidable fluctuationsassociated to the driving mechanical system, namely the stepper motor and thelead screw. As an alternative, this work presents a platform for controlledhydrodynamic focusing driven by gravity. In advance to previous works were theuse of hydrostatic pressure has been proposed, here we describe a mathematicalmodel to quantitatively handle the flow stream widths as a function of thefluid reservoir heights. The model enables a fine tuning of flow rates,provided the hydrodynamic resistance of the whole circuit is known.Focusing experiments were carried out at different flow rate ratios inPMMA/OCA film hybrid chips with slit microchannels forming cross-shapedintersections. Results were compared to those obtained when fluids are infusedby syringe pumps to the same chips. It is demonstrated that the gravity driven systemis successful for attaining highly stable and well-defined flow streams. Then,the crystallization of calcium carbonate was implemented in the gravity-drivensystemas example of application. The reaction take place at the interface ofco-flowing streams that transport the respective reactants, hence differentfinal products are attained for different reservoir heights. Apart fromenabling accurate fluid handling and stability, the model-controlled platformis highly versatile to design new experiments, as well as to assist theoperator in practice.
Fil: Minetti, Florencia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina
Fil: Olivares, María Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina
Fil: Berli, Claudio Luis Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina
II Brazil-Argentine Microfluidics Congress y V Congreso de Microfluídica Argentina
Córodoba
Argentina
Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía, Física y Computación
description Hydrodynamic focusing is a key operation in microfluidics, withapplications that range from cell sorting and counting to mixing and reactions.For most of these operations, both stability and precise handling of thefocused stream are essential. However, these requirements are hardly attainedwhen fluids are supplied by syringe pumps, due to the unavoidable fluctuationsassociated to the driving mechanical system, namely the stepper motor and thelead screw. As an alternative, this work presents a platform for controlledhydrodynamic focusing driven by gravity. In advance to previous works were theuse of hydrostatic pressure has been proposed, here we describe a mathematicalmodel to quantitatively handle the flow stream widths as a function of thefluid reservoir heights. The model enables a fine tuning of flow rates,provided the hydrodynamic resistance of the whole circuit is known.Focusing experiments were carried out at different flow rate ratios inPMMA/OCA film hybrid chips with slit microchannels forming cross-shapedintersections. Results were compared to those obtained when fluids are infusedby syringe pumps to the same chips. It is demonstrated that the gravity driven systemis successful for attaining highly stable and well-defined flow streams. Then,the crystallization of calcium carbonate was implemented in the gravity-drivensystemas example of application. The reaction take place at the interface ofco-flowing streams that transport the respective reactants, hence differentfinal products are attained for different reservoir heights. Apart fromenabling accurate fluid handling and stability, the model-controlled platformis highly versatile to design new experiments, as well as to assist theoperator in practice.
publishDate 2019
dc.date.none.fl_str_mv 2019
dc.type.none.fl_str_mv info:eu-repo/semantics/publishedVersion
info:eu-repo/semantics/conferenceObject
Congreso
Book
http://purl.org/coar/resource_type/c_5794
info:ar-repo/semantics/documentoDeConferencia
status_str publishedVersion
format conferenceObject
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/136259
Gravity driven flow for the precise control of hydrodynamic focusing; II Brazil-Argentine Microfluidics Congress y V Congreso de Microfluídica Argentina; Córodoba; Argentina; 2019
978-987-779-009-2
CONICET Digital
CONICET
url http://hdl.handle.net/11336/136259
identifier_str_mv Gravity driven flow for the precise control of hydrodynamic focusing; II Brazil-Argentine Microfluidics Congress y V Congreso de Microfluídica Argentina; Córodoba; Argentina; 2019
978-987-779-009-2
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.mfarg.org/book-of-abstracts
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.coverage.none.fl_str_mv Internacional
dc.publisher.none.fl_str_mv Universidad Nacional de Córdoba
publisher.none.fl_str_mv Universidad Nacional de Córdoba
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846782311643742208
score 12.982451