Electronic structure of Ge1-x-ySixSny ternary alloys for multijunction solar cells
- Autores
- Ventura, Cecilia Ileana; Querales Flores, Jose Daniel; Fuhr, Javier Daniel; Barrio, Rafael A
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Ternary group-IV alloys have a wide potential for applications in infrared devices and optoelectronics. In connection with photovoltaic applications, they are among the most promising materials for inclusion in the next generation of high-efficiency multijunction solar cells, because they can be lattice matched to substrates as GaAs and Ge, offering the possibility of a range of band gaps complementary to III-V semiconductors. Apart from the full decoupling of lattice and band structures in Ge1-x-ySixSny alloys, experimentally confirmed, they allow preparation in a controllable and large range of compositions, thus enabling to tune their band gap. Recently, optical experiments on ternary alloy-based films, photodetectors measured the direct absorption edges and probed the compositional dependence of the direct gap. The nature of the fundamental gap of Ge1-x-ySixSny alloys is still unknown, as neither experimental data on the indirect edges nor electronic structure calculations are available, as yet. Here, we report a first calculation of the electronic structure of Ge1-x-ySixSny ternary alloys, employing a combined tight-binding and virtual crystal approximation method, which proved to be useful to describe group-IV semiconductor binary alloys. Our results confirm predictions and experimental indications that a 1 eV band gap is indeed attainable with these ternary alloys, as required for the fourth layer plan to be added to present-day record-efficiency triple-junction solar cells, to further increase their efficiency, for example, for satellite applications. When lattice matched to Ge, we find that Ge1-x-ySixSny ternary alloys have an indirect gap with a compositional dependence reflecting the presence of two competing minima in the conduction band.
Fil: Ventura, Cecilia Ileana. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Universidad Nacional de Río Negro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Querales Flores, Jose Daniel. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Universidad Nacional de Río Negro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Fuhr, Javier Daniel. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Barrio, Rafael A. Universidad Nacional Autónoma de México; México - Materia
-
Electronic Structure
Multijunction Solar Cells
Semiconductor Alloys - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/37847
Ver los metadatos del registro completo
id |
CONICETDig_add47593007ba10a9bdec224f3a6968b |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/37847 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Electronic structure of Ge1-x-ySixSny ternary alloys for multijunction solar cellsVentura, Cecilia IleanaQuerales Flores, Jose DanielFuhr, Javier DanielBarrio, Rafael AElectronic StructureMultijunction Solar CellsSemiconductor Alloyshttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Ternary group-IV alloys have a wide potential for applications in infrared devices and optoelectronics. In connection with photovoltaic applications, they are among the most promising materials for inclusion in the next generation of high-efficiency multijunction solar cells, because they can be lattice matched to substrates as GaAs and Ge, offering the possibility of a range of band gaps complementary to III-V semiconductors. Apart from the full decoupling of lattice and band structures in Ge1-x-ySixSny alloys, experimentally confirmed, they allow preparation in a controllable and large range of compositions, thus enabling to tune their band gap. Recently, optical experiments on ternary alloy-based films, photodetectors measured the direct absorption edges and probed the compositional dependence of the direct gap. The nature of the fundamental gap of Ge1-x-ySixSny alloys is still unknown, as neither experimental data on the indirect edges nor electronic structure calculations are available, as yet. Here, we report a first calculation of the electronic structure of Ge1-x-ySixSny ternary alloys, employing a combined tight-binding and virtual crystal approximation method, which proved to be useful to describe group-IV semiconductor binary alloys. Our results confirm predictions and experimental indications that a 1 eV band gap is indeed attainable with these ternary alloys, as required for the fourth layer plan to be added to present-day record-efficiency triple-junction solar cells, to further increase their efficiency, for example, for satellite applications. When lattice matched to Ge, we find that Ge1-x-ySixSny ternary alloys have an indirect gap with a compositional dependence reflecting the presence of two competing minima in the conduction band.Fil: Ventura, Cecilia Ileana. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Universidad Nacional de Río Negro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Querales Flores, Jose Daniel. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Universidad Nacional de Río Negro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Fuhr, Javier Daniel. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Barrio, Rafael A. Universidad Nacional Autónoma de México; MéxicoJohn Wiley & Sons Ltd2015-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/37847Ventura, Cecilia Ileana; Querales Flores, Jose Daniel; Fuhr, Javier Daniel; Barrio, Rafael A; Electronic structure of Ge1-x-ySixSny ternary alloys for multijunction solar cells; John Wiley & Sons Ltd; Progress In Photovoltaics; 23; 1; 1-2015; 112-1181062-7995CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1002/pip.2405info:eu-repo/semantics/altIdentifier/url/http://onlinelibrary.wiley.com/doi/10.1002/pip.2405/abstractinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:24:47Zoai:ri.conicet.gov.ar:11336/37847instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:24:47.486CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Electronic structure of Ge1-x-ySixSny ternary alloys for multijunction solar cells |
title |
Electronic structure of Ge1-x-ySixSny ternary alloys for multijunction solar cells |
spellingShingle |
Electronic structure of Ge1-x-ySixSny ternary alloys for multijunction solar cells Ventura, Cecilia Ileana Electronic Structure Multijunction Solar Cells Semiconductor Alloys |
title_short |
Electronic structure of Ge1-x-ySixSny ternary alloys for multijunction solar cells |
title_full |
Electronic structure of Ge1-x-ySixSny ternary alloys for multijunction solar cells |
title_fullStr |
Electronic structure of Ge1-x-ySixSny ternary alloys for multijunction solar cells |
title_full_unstemmed |
Electronic structure of Ge1-x-ySixSny ternary alloys for multijunction solar cells |
title_sort |
Electronic structure of Ge1-x-ySixSny ternary alloys for multijunction solar cells |
dc.creator.none.fl_str_mv |
Ventura, Cecilia Ileana Querales Flores, Jose Daniel Fuhr, Javier Daniel Barrio, Rafael A |
author |
Ventura, Cecilia Ileana |
author_facet |
Ventura, Cecilia Ileana Querales Flores, Jose Daniel Fuhr, Javier Daniel Barrio, Rafael A |
author_role |
author |
author2 |
Querales Flores, Jose Daniel Fuhr, Javier Daniel Barrio, Rafael A |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Electronic Structure Multijunction Solar Cells Semiconductor Alloys |
topic |
Electronic Structure Multijunction Solar Cells Semiconductor Alloys |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Ternary group-IV alloys have a wide potential for applications in infrared devices and optoelectronics. In connection with photovoltaic applications, they are among the most promising materials for inclusion in the next generation of high-efficiency multijunction solar cells, because they can be lattice matched to substrates as GaAs and Ge, offering the possibility of a range of band gaps complementary to III-V semiconductors. Apart from the full decoupling of lattice and band structures in Ge1-x-ySixSny alloys, experimentally confirmed, they allow preparation in a controllable and large range of compositions, thus enabling to tune their band gap. Recently, optical experiments on ternary alloy-based films, photodetectors measured the direct absorption edges and probed the compositional dependence of the direct gap. The nature of the fundamental gap of Ge1-x-ySixSny alloys is still unknown, as neither experimental data on the indirect edges nor electronic structure calculations are available, as yet. Here, we report a first calculation of the electronic structure of Ge1-x-ySixSny ternary alloys, employing a combined tight-binding and virtual crystal approximation method, which proved to be useful to describe group-IV semiconductor binary alloys. Our results confirm predictions and experimental indications that a 1 eV band gap is indeed attainable with these ternary alloys, as required for the fourth layer plan to be added to present-day record-efficiency triple-junction solar cells, to further increase their efficiency, for example, for satellite applications. When lattice matched to Ge, we find that Ge1-x-ySixSny ternary alloys have an indirect gap with a compositional dependence reflecting the presence of two competing minima in the conduction band. Fil: Ventura, Cecilia Ileana. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Universidad Nacional de Río Negro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Querales Flores, Jose Daniel. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Universidad Nacional de Río Negro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Fuhr, Javier Daniel. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Barrio, Rafael A. Universidad Nacional Autónoma de México; México |
description |
Ternary group-IV alloys have a wide potential for applications in infrared devices and optoelectronics. In connection with photovoltaic applications, they are among the most promising materials for inclusion in the next generation of high-efficiency multijunction solar cells, because they can be lattice matched to substrates as GaAs and Ge, offering the possibility of a range of band gaps complementary to III-V semiconductors. Apart from the full decoupling of lattice and band structures in Ge1-x-ySixSny alloys, experimentally confirmed, they allow preparation in a controllable and large range of compositions, thus enabling to tune their band gap. Recently, optical experiments on ternary alloy-based films, photodetectors measured the direct absorption edges and probed the compositional dependence of the direct gap. The nature of the fundamental gap of Ge1-x-ySixSny alloys is still unknown, as neither experimental data on the indirect edges nor electronic structure calculations are available, as yet. Here, we report a first calculation of the electronic structure of Ge1-x-ySixSny ternary alloys, employing a combined tight-binding and virtual crystal approximation method, which proved to be useful to describe group-IV semiconductor binary alloys. Our results confirm predictions and experimental indications that a 1 eV band gap is indeed attainable with these ternary alloys, as required for the fourth layer plan to be added to present-day record-efficiency triple-junction solar cells, to further increase their efficiency, for example, for satellite applications. When lattice matched to Ge, we find that Ge1-x-ySixSny ternary alloys have an indirect gap with a compositional dependence reflecting the presence of two competing minima in the conduction band. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/37847 Ventura, Cecilia Ileana; Querales Flores, Jose Daniel; Fuhr, Javier Daniel; Barrio, Rafael A; Electronic structure of Ge1-x-ySixSny ternary alloys for multijunction solar cells; John Wiley & Sons Ltd; Progress In Photovoltaics; 23; 1; 1-2015; 112-118 1062-7995 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/37847 |
identifier_str_mv |
Ventura, Cecilia Ileana; Querales Flores, Jose Daniel; Fuhr, Javier Daniel; Barrio, Rafael A; Electronic structure of Ge1-x-ySixSny ternary alloys for multijunction solar cells; John Wiley & Sons Ltd; Progress In Photovoltaics; 23; 1; 1-2015; 112-118 1062-7995 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1002/pip.2405 info:eu-repo/semantics/altIdentifier/url/http://onlinelibrary.wiley.com/doi/10.1002/pip.2405/abstract |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
John Wiley & Sons Ltd |
publisher.none.fl_str_mv |
John Wiley & Sons Ltd |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846082674147459072 |
score |
13.22299 |