Anatomy of the hindlimb musculature in the cursorial caviomorph Dasyprocta azarae Lichtenstein, 1823 (Rodentia, Dasyproctidae): functional and evolutionary significance
- Autores
- García Esponda, César M.; Candela, Adriana Magdalena
- Año de publicación
- 2010
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The musculature of the hindlimb of the cursorial caviomorph Dasyprocta azarae is described and functionally evaluated, together with osteological associated traits. Our results show that several features are indicative of emphasized parasagittal movements and stabilized joints. Mm. glutei are relatively well developed, in agreement with an enhanced extension of the hip joint. The relative elongation of the ischium indicates an improved mechanical advantage of the hamstring muscles, required for powerful extension of the hip. M. iliopsoas would act mainly as a protractor of the femur rather than as a rotator. M. peroneus brevis, an evertor and plantarflexor of the foot, is absent. The inversion of the pes would be reduced, such as expressed by the marked reduction of the m. tibialis caudalis. Osteological characters are arranged to facilitate parasagittal movements and to restrict joint mobility. Some features of Dasyprocta (e.g., presence of a gluteal tongue of m. gluteus medius, reduction in number of m. lumbricales, presence of a gluteal crest of the ilium) are interpreted as potential synapomorphies of cavioids. Other features associated to cursoriality (absence of mm. peroneus brevis, reduction of m. tibialis caudalis) would have been acquired independently in the extreme cursorial cavioids tongue of m. gluteus medius, reduction in number of m. lumbricales, presence of a gluteal crest of the ilium) are interpreted as potential synapomorphies of cavioids. Other features associated to cursoriality (absence of mm. peroneus brevis, reduction of m. tibialis caudalis) would have been acquired independently in the extreme cursorial cavioids together with osteological associated traits. Our results show that several features are indicative of emphasized parasagittal movements and stabilized joints. Mm. glutei are relatively well developed, in agreement with an enhanced extension of the hip joint. The relative elongation of the ischium indicates an improved mechanical advantage of the hamstring muscles, required for powerful extension of the hip. M. iliopsoas would act mainly as a protractor of the femur rather than as a rotator. M. peroneus brevis, an evertor and plantarflexor of the foot, is absent. The inversion of the pes would be reduced, such as expressed by the marked reduction of the m. tibialis caudalis. Osteological characters are arranged to facilitate parasagittal movements and to restrict joint mobility. Some features of Dasyprocta (e.g., presence of a gluteal tongue of m. gluteus medius, reduction in number of m. lumbricales, presence of a gluteal crest of the ilium) are interpreted as potential synapomorphies of cavioids. Other features associated to cursoriality (absence of mm. peroneus brevis, reduction of m. tibialis caudalis) would have been acquired independently in the extreme cursorial cavioids tongue of m. gluteus medius, reduction in number of m. lumbricales, presence of a gluteal crest of the ilium) are interpreted as potential synapomorphies of cavioids. Other features associated to cursoriality (absence of mm. peroneus brevis, reduction of m. tibialis caudalis) would have been acquired independently in the extreme cursorial cavioids is described and functionally evaluated, together with osteological associated traits. Our results show that several features are indicative of emphasized parasagittal movements and stabilized joints. Mm. glutei are relatively well developed, in agreement with an enhanced extension of the hip joint. The relative elongation of the ischium indicates an improved mechanical advantage of the hamstring muscles, required for powerful extension of the hip. M. iliopsoas would act mainly as a protractor of the femur rather than as a rotator. M. peroneus brevis, an evertor and plantarflexor of the foot, is absent. The inversion of the pes would be reduced, such as expressed by the marked reduction of the m. tibialis caudalis. Osteological characters are arranged to facilitate parasagittal movements and to restrict joint mobility. Some features of Dasyprocta (e.g., presence of a gluteal tongue of m. gluteus medius, reduction in number of m. lumbricales, presence of a gluteal crest of the ilium) are interpreted as potential synapomorphies of cavioids. Other features associated to cursoriality (absence of mm. peroneus brevis, reduction of m. tibialis caudalis) would have been acquired independently in the extreme cursorial cavioids tongue of m. gluteus medius, reduction in number of m. lumbricales, presence of a gluteal crest of the ilium) are interpreted as potential synapomorphies of cavioids. Other features associated to cursoriality (absence of mm. peroneus brevis, reduction of m. tibialis caudalis) would have been acquired independently in the extreme cursorial cavioids Dasyprocta (e.g., presence of a gluteal tongue of m. gluteus medius, reduction in number of m. lumbricales, presence of a gluteal crest of the ilium) are interpreted as potential synapomorphies of cavioids. Other features associated to cursoriality (absence of mm. peroneus brevis, reduction of m. tibialis caudalis) would have been acquired independently in the extreme cursorial cavioids Dasyprocta and Dolichotis.and Dolichotis.
Fil: García Esponda, César M.. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. Laboratorio de Anatomía Comparada; Argentina
Fil: Candela, Adriana Magdalena. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. División Paleontología Vertebrados; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina - Materia
-
CAVIOIDEA
CHARACTER MAPPING
DASYPROCTA AZZARAE
FUNCTIONAL MORPHOLOGY - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/241559
Ver los metadatos del registro completo
id |
CONICETDig_adc5d51796bb96f2fa9c8f480da54acd |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/241559 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Anatomy of the hindlimb musculature in the cursorial caviomorph Dasyprocta azarae Lichtenstein, 1823 (Rodentia, Dasyproctidae): functional and evolutionary significanceGarcía Esponda, César M.Candela, Adriana MagdalenaCAVIOIDEACHARACTER MAPPINGDASYPROCTA AZZARAEFUNCTIONAL MORPHOLOGYhttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1The musculature of the hindlimb of the cursorial caviomorph Dasyprocta azarae is described and functionally evaluated, together with osteological associated traits. Our results show that several features are indicative of emphasized parasagittal movements and stabilized joints. Mm. glutei are relatively well developed, in agreement with an enhanced extension of the hip joint. The relative elongation of the ischium indicates an improved mechanical advantage of the hamstring muscles, required for powerful extension of the hip. M. iliopsoas would act mainly as a protractor of the femur rather than as a rotator. M. peroneus brevis, an evertor and plantarflexor of the foot, is absent. The inversion of the pes would be reduced, such as expressed by the marked reduction of the m. tibialis caudalis. Osteological characters are arranged to facilitate parasagittal movements and to restrict joint mobility. Some features of Dasyprocta (e.g., presence of a gluteal tongue of m. gluteus medius, reduction in number of m. lumbricales, presence of a gluteal crest of the ilium) are interpreted as potential synapomorphies of cavioids. Other features associated to cursoriality (absence of mm. peroneus brevis, reduction of m. tibialis caudalis) would have been acquired independently in the extreme cursorial cavioids tongue of m. gluteus medius, reduction in number of m. lumbricales, presence of a gluteal crest of the ilium) are interpreted as potential synapomorphies of cavioids. Other features associated to cursoriality (absence of mm. peroneus brevis, reduction of m. tibialis caudalis) would have been acquired independently in the extreme cursorial cavioids together with osteological associated traits. Our results show that several features are indicative of emphasized parasagittal movements and stabilized joints. Mm. glutei are relatively well developed, in agreement with an enhanced extension of the hip joint. The relative elongation of the ischium indicates an improved mechanical advantage of the hamstring muscles, required for powerful extension of the hip. M. iliopsoas would act mainly as a protractor of the femur rather than as a rotator. M. peroneus brevis, an evertor and plantarflexor of the foot, is absent. The inversion of the pes would be reduced, such as expressed by the marked reduction of the m. tibialis caudalis. Osteological characters are arranged to facilitate parasagittal movements and to restrict joint mobility. Some features of Dasyprocta (e.g., presence of a gluteal tongue of m. gluteus medius, reduction in number of m. lumbricales, presence of a gluteal crest of the ilium) are interpreted as potential synapomorphies of cavioids. Other features associated to cursoriality (absence of mm. peroneus brevis, reduction of m. tibialis caudalis) would have been acquired independently in the extreme cursorial cavioids tongue of m. gluteus medius, reduction in number of m. lumbricales, presence of a gluteal crest of the ilium) are interpreted as potential synapomorphies of cavioids. Other features associated to cursoriality (absence of mm. peroneus brevis, reduction of m. tibialis caudalis) would have been acquired independently in the extreme cursorial cavioids is described and functionally evaluated, together with osteological associated traits. Our results show that several features are indicative of emphasized parasagittal movements and stabilized joints. Mm. glutei are relatively well developed, in agreement with an enhanced extension of the hip joint. The relative elongation of the ischium indicates an improved mechanical advantage of the hamstring muscles, required for powerful extension of the hip. M. iliopsoas would act mainly as a protractor of the femur rather than as a rotator. M. peroneus brevis, an evertor and plantarflexor of the foot, is absent. The inversion of the pes would be reduced, such as expressed by the marked reduction of the m. tibialis caudalis. Osteological characters are arranged to facilitate parasagittal movements and to restrict joint mobility. Some features of Dasyprocta (e.g., presence of a gluteal tongue of m. gluteus medius, reduction in number of m. lumbricales, presence of a gluteal crest of the ilium) are interpreted as potential synapomorphies of cavioids. Other features associated to cursoriality (absence of mm. peroneus brevis, reduction of m. tibialis caudalis) would have been acquired independently in the extreme cursorial cavioids tongue of m. gluteus medius, reduction in number of m. lumbricales, presence of a gluteal crest of the ilium) are interpreted as potential synapomorphies of cavioids. Other features associated to cursoriality (absence of mm. peroneus brevis, reduction of m. tibialis caudalis) would have been acquired independently in the extreme cursorial cavioids Dasyprocta (e.g., presence of a gluteal tongue of m. gluteus medius, reduction in number of m. lumbricales, presence of a gluteal crest of the ilium) are interpreted as potential synapomorphies of cavioids. Other features associated to cursoriality (absence of mm. peroneus brevis, reduction of m. tibialis caudalis) would have been acquired independently in the extreme cursorial cavioids Dasyprocta and Dolichotis.and Dolichotis.Fil: García Esponda, César M.. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. Laboratorio de Anatomía Comparada; ArgentinaFil: Candela, Adriana Magdalena. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. División Paleontología Vertebrados; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; ArgentinaDe Gruyter2010-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/241559García Esponda, César M.; Candela, Adriana Magdalena; Anatomy of the hindlimb musculature in the cursorial caviomorph Dasyprocta azarae Lichtenstein, 1823 (Rodentia, Dasyproctidae): functional and evolutionary significance; De Gruyter; Mammalia; 74; 4; 12-2010; 407-4220025-1461CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.degruyter.com/document/doi/10.1515/mamm.2010.042/pdfinfo:eu-repo/semantics/altIdentifier/doi/10.1515/mamm.2010.042info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:08:09Zoai:ri.conicet.gov.ar:11336/241559instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:08:09.899CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Anatomy of the hindlimb musculature in the cursorial caviomorph Dasyprocta azarae Lichtenstein, 1823 (Rodentia, Dasyproctidae): functional and evolutionary significance |
title |
Anatomy of the hindlimb musculature in the cursorial caviomorph Dasyprocta azarae Lichtenstein, 1823 (Rodentia, Dasyproctidae): functional and evolutionary significance |
spellingShingle |
Anatomy of the hindlimb musculature in the cursorial caviomorph Dasyprocta azarae Lichtenstein, 1823 (Rodentia, Dasyproctidae): functional and evolutionary significance García Esponda, César M. CAVIOIDEA CHARACTER MAPPING DASYPROCTA AZZARAE FUNCTIONAL MORPHOLOGY |
title_short |
Anatomy of the hindlimb musculature in the cursorial caviomorph Dasyprocta azarae Lichtenstein, 1823 (Rodentia, Dasyproctidae): functional and evolutionary significance |
title_full |
Anatomy of the hindlimb musculature in the cursorial caviomorph Dasyprocta azarae Lichtenstein, 1823 (Rodentia, Dasyproctidae): functional and evolutionary significance |
title_fullStr |
Anatomy of the hindlimb musculature in the cursorial caviomorph Dasyprocta azarae Lichtenstein, 1823 (Rodentia, Dasyproctidae): functional and evolutionary significance |
title_full_unstemmed |
Anatomy of the hindlimb musculature in the cursorial caviomorph Dasyprocta azarae Lichtenstein, 1823 (Rodentia, Dasyproctidae): functional and evolutionary significance |
title_sort |
Anatomy of the hindlimb musculature in the cursorial caviomorph Dasyprocta azarae Lichtenstein, 1823 (Rodentia, Dasyproctidae): functional and evolutionary significance |
dc.creator.none.fl_str_mv |
García Esponda, César M. Candela, Adriana Magdalena |
author |
García Esponda, César M. |
author_facet |
García Esponda, César M. Candela, Adriana Magdalena |
author_role |
author |
author2 |
Candela, Adriana Magdalena |
author2_role |
author |
dc.subject.none.fl_str_mv |
CAVIOIDEA CHARACTER MAPPING DASYPROCTA AZZARAE FUNCTIONAL MORPHOLOGY |
topic |
CAVIOIDEA CHARACTER MAPPING DASYPROCTA AZZARAE FUNCTIONAL MORPHOLOGY |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.6 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The musculature of the hindlimb of the cursorial caviomorph Dasyprocta azarae is described and functionally evaluated, together with osteological associated traits. Our results show that several features are indicative of emphasized parasagittal movements and stabilized joints. Mm. glutei are relatively well developed, in agreement with an enhanced extension of the hip joint. The relative elongation of the ischium indicates an improved mechanical advantage of the hamstring muscles, required for powerful extension of the hip. M. iliopsoas would act mainly as a protractor of the femur rather than as a rotator. M. peroneus brevis, an evertor and plantarflexor of the foot, is absent. The inversion of the pes would be reduced, such as expressed by the marked reduction of the m. tibialis caudalis. Osteological characters are arranged to facilitate parasagittal movements and to restrict joint mobility. Some features of Dasyprocta (e.g., presence of a gluteal tongue of m. gluteus medius, reduction in number of m. lumbricales, presence of a gluteal crest of the ilium) are interpreted as potential synapomorphies of cavioids. Other features associated to cursoriality (absence of mm. peroneus brevis, reduction of m. tibialis caudalis) would have been acquired independently in the extreme cursorial cavioids tongue of m. gluteus medius, reduction in number of m. lumbricales, presence of a gluteal crest of the ilium) are interpreted as potential synapomorphies of cavioids. Other features associated to cursoriality (absence of mm. peroneus brevis, reduction of m. tibialis caudalis) would have been acquired independently in the extreme cursorial cavioids together with osteological associated traits. Our results show that several features are indicative of emphasized parasagittal movements and stabilized joints. Mm. glutei are relatively well developed, in agreement with an enhanced extension of the hip joint. The relative elongation of the ischium indicates an improved mechanical advantage of the hamstring muscles, required for powerful extension of the hip. M. iliopsoas would act mainly as a protractor of the femur rather than as a rotator. M. peroneus brevis, an evertor and plantarflexor of the foot, is absent. The inversion of the pes would be reduced, such as expressed by the marked reduction of the m. tibialis caudalis. Osteological characters are arranged to facilitate parasagittal movements and to restrict joint mobility. Some features of Dasyprocta (e.g., presence of a gluteal tongue of m. gluteus medius, reduction in number of m. lumbricales, presence of a gluteal crest of the ilium) are interpreted as potential synapomorphies of cavioids. Other features associated to cursoriality (absence of mm. peroneus brevis, reduction of m. tibialis caudalis) would have been acquired independently in the extreme cursorial cavioids tongue of m. gluteus medius, reduction in number of m. lumbricales, presence of a gluteal crest of the ilium) are interpreted as potential synapomorphies of cavioids. Other features associated to cursoriality (absence of mm. peroneus brevis, reduction of m. tibialis caudalis) would have been acquired independently in the extreme cursorial cavioids is described and functionally evaluated, together with osteological associated traits. Our results show that several features are indicative of emphasized parasagittal movements and stabilized joints. Mm. glutei are relatively well developed, in agreement with an enhanced extension of the hip joint. The relative elongation of the ischium indicates an improved mechanical advantage of the hamstring muscles, required for powerful extension of the hip. M. iliopsoas would act mainly as a protractor of the femur rather than as a rotator. M. peroneus brevis, an evertor and plantarflexor of the foot, is absent. The inversion of the pes would be reduced, such as expressed by the marked reduction of the m. tibialis caudalis. Osteological characters are arranged to facilitate parasagittal movements and to restrict joint mobility. Some features of Dasyprocta (e.g., presence of a gluteal tongue of m. gluteus medius, reduction in number of m. lumbricales, presence of a gluteal crest of the ilium) are interpreted as potential synapomorphies of cavioids. Other features associated to cursoriality (absence of mm. peroneus brevis, reduction of m. tibialis caudalis) would have been acquired independently in the extreme cursorial cavioids tongue of m. gluteus medius, reduction in number of m. lumbricales, presence of a gluteal crest of the ilium) are interpreted as potential synapomorphies of cavioids. Other features associated to cursoriality (absence of mm. peroneus brevis, reduction of m. tibialis caudalis) would have been acquired independently in the extreme cursorial cavioids Dasyprocta (e.g., presence of a gluteal tongue of m. gluteus medius, reduction in number of m. lumbricales, presence of a gluteal crest of the ilium) are interpreted as potential synapomorphies of cavioids. Other features associated to cursoriality (absence of mm. peroneus brevis, reduction of m. tibialis caudalis) would have been acquired independently in the extreme cursorial cavioids Dasyprocta and Dolichotis.and Dolichotis. Fil: García Esponda, César M.. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. Laboratorio de Anatomía Comparada; Argentina Fil: Candela, Adriana Magdalena. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. División Paleontología Vertebrados; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina |
description |
The musculature of the hindlimb of the cursorial caviomorph Dasyprocta azarae is described and functionally evaluated, together with osteological associated traits. Our results show that several features are indicative of emphasized parasagittal movements and stabilized joints. Mm. glutei are relatively well developed, in agreement with an enhanced extension of the hip joint. The relative elongation of the ischium indicates an improved mechanical advantage of the hamstring muscles, required for powerful extension of the hip. M. iliopsoas would act mainly as a protractor of the femur rather than as a rotator. M. peroneus brevis, an evertor and plantarflexor of the foot, is absent. The inversion of the pes would be reduced, such as expressed by the marked reduction of the m. tibialis caudalis. Osteological characters are arranged to facilitate parasagittal movements and to restrict joint mobility. Some features of Dasyprocta (e.g., presence of a gluteal tongue of m. gluteus medius, reduction in number of m. lumbricales, presence of a gluteal crest of the ilium) are interpreted as potential synapomorphies of cavioids. Other features associated to cursoriality (absence of mm. peroneus brevis, reduction of m. tibialis caudalis) would have been acquired independently in the extreme cursorial cavioids tongue of m. gluteus medius, reduction in number of m. lumbricales, presence of a gluteal crest of the ilium) are interpreted as potential synapomorphies of cavioids. Other features associated to cursoriality (absence of mm. peroneus brevis, reduction of m. tibialis caudalis) would have been acquired independently in the extreme cursorial cavioids together with osteological associated traits. Our results show that several features are indicative of emphasized parasagittal movements and stabilized joints. Mm. glutei are relatively well developed, in agreement with an enhanced extension of the hip joint. The relative elongation of the ischium indicates an improved mechanical advantage of the hamstring muscles, required for powerful extension of the hip. M. iliopsoas would act mainly as a protractor of the femur rather than as a rotator. M. peroneus brevis, an evertor and plantarflexor of the foot, is absent. The inversion of the pes would be reduced, such as expressed by the marked reduction of the m. tibialis caudalis. Osteological characters are arranged to facilitate parasagittal movements and to restrict joint mobility. Some features of Dasyprocta (e.g., presence of a gluteal tongue of m. gluteus medius, reduction in number of m. lumbricales, presence of a gluteal crest of the ilium) are interpreted as potential synapomorphies of cavioids. Other features associated to cursoriality (absence of mm. peroneus brevis, reduction of m. tibialis caudalis) would have been acquired independently in the extreme cursorial cavioids tongue of m. gluteus medius, reduction in number of m. lumbricales, presence of a gluteal crest of the ilium) are interpreted as potential synapomorphies of cavioids. Other features associated to cursoriality (absence of mm. peroneus brevis, reduction of m. tibialis caudalis) would have been acquired independently in the extreme cursorial cavioids is described and functionally evaluated, together with osteological associated traits. Our results show that several features are indicative of emphasized parasagittal movements and stabilized joints. Mm. glutei are relatively well developed, in agreement with an enhanced extension of the hip joint. The relative elongation of the ischium indicates an improved mechanical advantage of the hamstring muscles, required for powerful extension of the hip. M. iliopsoas would act mainly as a protractor of the femur rather than as a rotator. M. peroneus brevis, an evertor and plantarflexor of the foot, is absent. The inversion of the pes would be reduced, such as expressed by the marked reduction of the m. tibialis caudalis. Osteological characters are arranged to facilitate parasagittal movements and to restrict joint mobility. Some features of Dasyprocta (e.g., presence of a gluteal tongue of m. gluteus medius, reduction in number of m. lumbricales, presence of a gluteal crest of the ilium) are interpreted as potential synapomorphies of cavioids. Other features associated to cursoriality (absence of mm. peroneus brevis, reduction of m. tibialis caudalis) would have been acquired independently in the extreme cursorial cavioids tongue of m. gluteus medius, reduction in number of m. lumbricales, presence of a gluteal crest of the ilium) are interpreted as potential synapomorphies of cavioids. Other features associated to cursoriality (absence of mm. peroneus brevis, reduction of m. tibialis caudalis) would have been acquired independently in the extreme cursorial cavioids Dasyprocta (e.g., presence of a gluteal tongue of m. gluteus medius, reduction in number of m. lumbricales, presence of a gluteal crest of the ilium) are interpreted as potential synapomorphies of cavioids. Other features associated to cursoriality (absence of mm. peroneus brevis, reduction of m. tibialis caudalis) would have been acquired independently in the extreme cursorial cavioids Dasyprocta and Dolichotis.and Dolichotis. |
publishDate |
2010 |
dc.date.none.fl_str_mv |
2010-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/241559 García Esponda, César M.; Candela, Adriana Magdalena; Anatomy of the hindlimb musculature in the cursorial caviomorph Dasyprocta azarae Lichtenstein, 1823 (Rodentia, Dasyproctidae): functional and evolutionary significance; De Gruyter; Mammalia; 74; 4; 12-2010; 407-422 0025-1461 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/241559 |
identifier_str_mv |
García Esponda, César M.; Candela, Adriana Magdalena; Anatomy of the hindlimb musculature in the cursorial caviomorph Dasyprocta azarae Lichtenstein, 1823 (Rodentia, Dasyproctidae): functional and evolutionary significance; De Gruyter; Mammalia; 74; 4; 12-2010; 407-422 0025-1461 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.degruyter.com/document/doi/10.1515/mamm.2010.042/pdf info:eu-repo/semantics/altIdentifier/doi/10.1515/mamm.2010.042 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
De Gruyter |
publisher.none.fl_str_mv |
De Gruyter |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842270033546313728 |
score |
13.13397 |