Functional diversity loss with increasing livestock grazing intensity in drylands: the mechanisms and their consequences depend on the taxa

Autores
Chillo, María Verónica; Ojeda, Ricardo Alberto; Capmourteres, Virginia; Anand, Madhur
Año de publicación
2017
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Overgrazing is one of the main drivers of desertification in drylands, and livestock production is expected to increase in the next decades. The analysis of functional diversity can clarify the effects of increasing livestock grazing on ecosystem functioning. We assess the effect of livestock grazing intensity on the relationship between taxonomic diversity (TDH) and functional diversity (FDQ) of plants, ants and small mammals, as well as on within-trait diversity. We compared results using two indices of taxonomic diversity (Shannon and Simpson indices). We used structural equation modelling (SEM) to assess the causal relationship between grazing intensity, TDH, FDQ and decomposition rate for each taxa. Correlation between TDH vs. FDQ varied across assemblages and seasons, but was consistent between different indices of taxonomic diversity. A similar trajectory of TDH vs. FDQ under land-use intensification was found for all taxa, with a correlated loss of species and functional traits. Also, within-trait diversity was negatively affected by increasing grazing pressure. Vegetation and small mammal SEM models show that increasing grazing intensity had a strong and direct effect on decomposition rate. The ant SEM model was the only one that showed an indirect effect of grazing on decomposition through FDQ. TDH had no effect on decomposition for either taxa. We found higher niche differentiation in animal than in plant assemblages. In vegetation, several species seem to have similar trait diversity (i.e. redundancy), perhaps due to a dominant role of environmental constraints. These results were consistent among diversity indices. But increasing disturbance negatively affected TDH vs. FDQ in all assemblages in a similar way. Livestock grazing affected decomposition rate directly, and indirectly only through the effect of ant FDQ. Synthesis and applications. Under increasing grazing intensity, all plant and animal assemblages respond with a mirrored reduction in taxonomic diversity and functional diversity, although vegetation seems to have higher functional redundancy. Our results are robust to diversity indices, and show that several taxa respond similarly to land-use intensification, despite differences in the mechanism behind it. This may facilitate sustainable management. Notably, increasing grazing intensity affects decomposition rate through a stronger direct than indirect effect. The stronger direct effect of livestock on decomposition rate, rather than indirectly through functional diversity, suggests that changes in structure may be more important than changes in community composition.
Fil: Chillo, María Verónica. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Argentino de Investigaciones de las Zonas Áridas. Provincia de Mendoza. Instituto Argentino de Investigaciones de las Zonas Áridas. Universidad Nacional de Cuyo. Instituto Argentino de Investigaciones de las Zonas Áridas; Argentina. University of Guelph; Canadá
Fil: Ojeda, Ricardo Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Argentino de Investigaciones de las Zonas Áridas. Provincia de Mendoza. Instituto Argentino de Investigaciones de las Zonas Áridas. Universidad Nacional de Cuyo. Instituto Argentino de Investigaciones de las Zonas Áridas; Argentina
Fil: Capmourteres, Virginia. University of Guelph; Canadá
Fil: Anand, Madhur. University of Guelph; Canadá
Materia
Ants
Arid Rangeland Management
Decomposition Rate
Drylands
Functional Effect Traits
Functional Redundancy
Monte Desert
Overgrazing
Small Mammals
Vegetation
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/77704

id CONICETDig_adb5cd478ae39a0d9ee1b1360d9944de
oai_identifier_str oai:ri.conicet.gov.ar:11336/77704
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Functional diversity loss with increasing livestock grazing intensity in drylands: the mechanisms and their consequences depend on the taxaChillo, María VerónicaOjeda, Ricardo AlbertoCapmourteres, VirginiaAnand, MadhurAntsArid Rangeland ManagementDecomposition RateDrylandsFunctional Effect TraitsFunctional RedundancyMonte DesertOvergrazingSmall MammalsVegetationhttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1Overgrazing is one of the main drivers of desertification in drylands, and livestock production is expected to increase in the next decades. The analysis of functional diversity can clarify the effects of increasing livestock grazing on ecosystem functioning. We assess the effect of livestock grazing intensity on the relationship between taxonomic diversity (TDH) and functional diversity (FDQ) of plants, ants and small mammals, as well as on within-trait diversity. We compared results using two indices of taxonomic diversity (Shannon and Simpson indices). We used structural equation modelling (SEM) to assess the causal relationship between grazing intensity, TDH, FDQ and decomposition rate for each taxa. Correlation between TDH vs. FDQ varied across assemblages and seasons, but was consistent between different indices of taxonomic diversity. A similar trajectory of TDH vs. FDQ under land-use intensification was found for all taxa, with a correlated loss of species and functional traits. Also, within-trait diversity was negatively affected by increasing grazing pressure. Vegetation and small mammal SEM models show that increasing grazing intensity had a strong and direct effect on decomposition rate. The ant SEM model was the only one that showed an indirect effect of grazing on decomposition through FDQ. TDH had no effect on decomposition for either taxa. We found higher niche differentiation in animal than in plant assemblages. In vegetation, several species seem to have similar trait diversity (i.e. redundancy), perhaps due to a dominant role of environmental constraints. These results were consistent among diversity indices. But increasing disturbance negatively affected TDH vs. FDQ in all assemblages in a similar way. Livestock grazing affected decomposition rate directly, and indirectly only through the effect of ant FDQ. Synthesis and applications. Under increasing grazing intensity, all plant and animal assemblages respond with a mirrored reduction in taxonomic diversity and functional diversity, although vegetation seems to have higher functional redundancy. Our results are robust to diversity indices, and show that several taxa respond similarly to land-use intensification, despite differences in the mechanism behind it. This may facilitate sustainable management. Notably, increasing grazing intensity affects decomposition rate through a stronger direct than indirect effect. The stronger direct effect of livestock on decomposition rate, rather than indirectly through functional diversity, suggests that changes in structure may be more important than changes in community composition.Fil: Chillo, María Verónica. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Argentino de Investigaciones de las Zonas Áridas. Provincia de Mendoza. Instituto Argentino de Investigaciones de las Zonas Áridas. Universidad Nacional de Cuyo. Instituto Argentino de Investigaciones de las Zonas Áridas; Argentina. University of Guelph; CanadáFil: Ojeda, Ricardo Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Argentino de Investigaciones de las Zonas Áridas. Provincia de Mendoza. Instituto Argentino de Investigaciones de las Zonas Áridas. Universidad Nacional de Cuyo. Instituto Argentino de Investigaciones de las Zonas Áridas; ArgentinaFil: Capmourteres, Virginia. University of Guelph; CanadáFil: Anand, Madhur. University of Guelph; CanadáWiley Blackwell Publishing, Inc2017-06-17info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/77704Chillo, María Verónica; Ojeda, Ricardo Alberto; Capmourteres, Virginia; Anand, Madhur; Functional diversity loss with increasing livestock grazing intensity in drylands: the mechanisms and their consequences depend on the taxa; Wiley Blackwell Publishing, Inc; Journal of Applied Ecology; 54; 3; 17-6-2017; 986-9960021-8901CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1111/1365-2664.12775info:eu-repo/semantics/altIdentifier/url/https://besjournals.onlinelibrary.wiley.com/doi/full/10.1111/1365-2664.12775info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:18:23Zoai:ri.conicet.gov.ar:11336/77704instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:18:23.671CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Functional diversity loss with increasing livestock grazing intensity in drylands: the mechanisms and their consequences depend on the taxa
title Functional diversity loss with increasing livestock grazing intensity in drylands: the mechanisms and their consequences depend on the taxa
spellingShingle Functional diversity loss with increasing livestock grazing intensity in drylands: the mechanisms and their consequences depend on the taxa
Chillo, María Verónica
Ants
Arid Rangeland Management
Decomposition Rate
Drylands
Functional Effect Traits
Functional Redundancy
Monte Desert
Overgrazing
Small Mammals
Vegetation
title_short Functional diversity loss with increasing livestock grazing intensity in drylands: the mechanisms and their consequences depend on the taxa
title_full Functional diversity loss with increasing livestock grazing intensity in drylands: the mechanisms and their consequences depend on the taxa
title_fullStr Functional diversity loss with increasing livestock grazing intensity in drylands: the mechanisms and their consequences depend on the taxa
title_full_unstemmed Functional diversity loss with increasing livestock grazing intensity in drylands: the mechanisms and their consequences depend on the taxa
title_sort Functional diversity loss with increasing livestock grazing intensity in drylands: the mechanisms and their consequences depend on the taxa
dc.creator.none.fl_str_mv Chillo, María Verónica
Ojeda, Ricardo Alberto
Capmourteres, Virginia
Anand, Madhur
author Chillo, María Verónica
author_facet Chillo, María Verónica
Ojeda, Ricardo Alberto
Capmourteres, Virginia
Anand, Madhur
author_role author
author2 Ojeda, Ricardo Alberto
Capmourteres, Virginia
Anand, Madhur
author2_role author
author
author
dc.subject.none.fl_str_mv Ants
Arid Rangeland Management
Decomposition Rate
Drylands
Functional Effect Traits
Functional Redundancy
Monte Desert
Overgrazing
Small Mammals
Vegetation
topic Ants
Arid Rangeland Management
Decomposition Rate
Drylands
Functional Effect Traits
Functional Redundancy
Monte Desert
Overgrazing
Small Mammals
Vegetation
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.6
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Overgrazing is one of the main drivers of desertification in drylands, and livestock production is expected to increase in the next decades. The analysis of functional diversity can clarify the effects of increasing livestock grazing on ecosystem functioning. We assess the effect of livestock grazing intensity on the relationship between taxonomic diversity (TDH) and functional diversity (FDQ) of plants, ants and small mammals, as well as on within-trait diversity. We compared results using two indices of taxonomic diversity (Shannon and Simpson indices). We used structural equation modelling (SEM) to assess the causal relationship between grazing intensity, TDH, FDQ and decomposition rate for each taxa. Correlation between TDH vs. FDQ varied across assemblages and seasons, but was consistent between different indices of taxonomic diversity. A similar trajectory of TDH vs. FDQ under land-use intensification was found for all taxa, with a correlated loss of species and functional traits. Also, within-trait diversity was negatively affected by increasing grazing pressure. Vegetation and small mammal SEM models show that increasing grazing intensity had a strong and direct effect on decomposition rate. The ant SEM model was the only one that showed an indirect effect of grazing on decomposition through FDQ. TDH had no effect on decomposition for either taxa. We found higher niche differentiation in animal than in plant assemblages. In vegetation, several species seem to have similar trait diversity (i.e. redundancy), perhaps due to a dominant role of environmental constraints. These results were consistent among diversity indices. But increasing disturbance negatively affected TDH vs. FDQ in all assemblages in a similar way. Livestock grazing affected decomposition rate directly, and indirectly only through the effect of ant FDQ. Synthesis and applications. Under increasing grazing intensity, all plant and animal assemblages respond with a mirrored reduction in taxonomic diversity and functional diversity, although vegetation seems to have higher functional redundancy. Our results are robust to diversity indices, and show that several taxa respond similarly to land-use intensification, despite differences in the mechanism behind it. This may facilitate sustainable management. Notably, increasing grazing intensity affects decomposition rate through a stronger direct than indirect effect. The stronger direct effect of livestock on decomposition rate, rather than indirectly through functional diversity, suggests that changes in structure may be more important than changes in community composition.
Fil: Chillo, María Verónica. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Argentino de Investigaciones de las Zonas Áridas. Provincia de Mendoza. Instituto Argentino de Investigaciones de las Zonas Áridas. Universidad Nacional de Cuyo. Instituto Argentino de Investigaciones de las Zonas Áridas; Argentina. University of Guelph; Canadá
Fil: Ojeda, Ricardo Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Argentino de Investigaciones de las Zonas Áridas. Provincia de Mendoza. Instituto Argentino de Investigaciones de las Zonas Áridas. Universidad Nacional de Cuyo. Instituto Argentino de Investigaciones de las Zonas Áridas; Argentina
Fil: Capmourteres, Virginia. University of Guelph; Canadá
Fil: Anand, Madhur. University of Guelph; Canadá
description Overgrazing is one of the main drivers of desertification in drylands, and livestock production is expected to increase in the next decades. The analysis of functional diversity can clarify the effects of increasing livestock grazing on ecosystem functioning. We assess the effect of livestock grazing intensity on the relationship between taxonomic diversity (TDH) and functional diversity (FDQ) of plants, ants and small mammals, as well as on within-trait diversity. We compared results using two indices of taxonomic diversity (Shannon and Simpson indices). We used structural equation modelling (SEM) to assess the causal relationship between grazing intensity, TDH, FDQ and decomposition rate for each taxa. Correlation between TDH vs. FDQ varied across assemblages and seasons, but was consistent between different indices of taxonomic diversity. A similar trajectory of TDH vs. FDQ under land-use intensification was found for all taxa, with a correlated loss of species and functional traits. Also, within-trait diversity was negatively affected by increasing grazing pressure. Vegetation and small mammal SEM models show that increasing grazing intensity had a strong and direct effect on decomposition rate. The ant SEM model was the only one that showed an indirect effect of grazing on decomposition through FDQ. TDH had no effect on decomposition for either taxa. We found higher niche differentiation in animal than in plant assemblages. In vegetation, several species seem to have similar trait diversity (i.e. redundancy), perhaps due to a dominant role of environmental constraints. These results were consistent among diversity indices. But increasing disturbance negatively affected TDH vs. FDQ in all assemblages in a similar way. Livestock grazing affected decomposition rate directly, and indirectly only through the effect of ant FDQ. Synthesis and applications. Under increasing grazing intensity, all plant and animal assemblages respond with a mirrored reduction in taxonomic diversity and functional diversity, although vegetation seems to have higher functional redundancy. Our results are robust to diversity indices, and show that several taxa respond similarly to land-use intensification, despite differences in the mechanism behind it. This may facilitate sustainable management. Notably, increasing grazing intensity affects decomposition rate through a stronger direct than indirect effect. The stronger direct effect of livestock on decomposition rate, rather than indirectly through functional diversity, suggests that changes in structure may be more important than changes in community composition.
publishDate 2017
dc.date.none.fl_str_mv 2017-06-17
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/77704
Chillo, María Verónica; Ojeda, Ricardo Alberto; Capmourteres, Virginia; Anand, Madhur; Functional diversity loss with increasing livestock grazing intensity in drylands: the mechanisms and their consequences depend on the taxa; Wiley Blackwell Publishing, Inc; Journal of Applied Ecology; 54; 3; 17-6-2017; 986-996
0021-8901
CONICET Digital
CONICET
url http://hdl.handle.net/11336/77704
identifier_str_mv Chillo, María Verónica; Ojeda, Ricardo Alberto; Capmourteres, Virginia; Anand, Madhur; Functional diversity loss with increasing livestock grazing intensity in drylands: the mechanisms and their consequences depend on the taxa; Wiley Blackwell Publishing, Inc; Journal of Applied Ecology; 54; 3; 17-6-2017; 986-996
0021-8901
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1111/1365-2664.12775
info:eu-repo/semantics/altIdentifier/url/https://besjournals.onlinelibrary.wiley.com/doi/full/10.1111/1365-2664.12775
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Wiley Blackwell Publishing, Inc
publisher.none.fl_str_mv Wiley Blackwell Publishing, Inc
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614145170735104
score 13.070432