A Berger-type theorem for metric connections with skew-symmetric torsion
- Autores
- Reggiani, Silvio Nicolás
- Año de publicación
- 2012
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We prove a Berger-type theorem which asserts that if the orthogonal subgroup generated by the torsion tensor (pulled back to a point by parallel transport) of a metric connection with skew-symmetric torsion is not transitive on the sphere, then the space must be locally isometric to a Lie group with a bi-invariant metric or its symmetric dual (we assume the space to be locally irreducible). We also prove that a (simple) Lie group with a bi-invariant metric admits only two flat metric connections with skew-symmetric torsion: the two flat canonical connections. In particular, we get a refinement of a well-known theorem of Cartan and Schouten. Finally, we show that the holonomy group of a metric connection with skew-symmetric torsion on these spaces generically coincides with the Riemannian holonomy.
Fil: Reggiani, Silvio Nicolás. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
Metric Connection
Flat Connection
Skew-Symmetric Torsion
Holonomy - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/21144
Ver los metadatos del registro completo
id |
CONICETDig_ad74260e342d352dc6162ac546f139a2 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/21144 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
A Berger-type theorem for metric connections with skew-symmetric torsionReggiani, Silvio NicolásMetric ConnectionFlat ConnectionSkew-Symmetric TorsionHolonomyhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We prove a Berger-type theorem which asserts that if the orthogonal subgroup generated by the torsion tensor (pulled back to a point by parallel transport) of a metric connection with skew-symmetric torsion is not transitive on the sphere, then the space must be locally isometric to a Lie group with a bi-invariant metric or its symmetric dual (we assume the space to be locally irreducible). We also prove that a (simple) Lie group with a bi-invariant metric admits only two flat metric connections with skew-symmetric torsion: the two flat canonical connections. In particular, we get a refinement of a well-known theorem of Cartan and Schouten. Finally, we show that the holonomy group of a metric connection with skew-symmetric torsion on these spaces generically coincides with the Riemannian holonomy.Fil: Reggiani, Silvio Nicolás. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaElsevier Science2012-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/21144Reggiani, Silvio Nicolás; A Berger-type theorem for metric connections with skew-symmetric torsion; Elsevier Science; Journal Of Geometry And Physics; 65; 12-2012; 26-340393-0440CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.geomphys.2012.11.012info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0393044012002124info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:02:20Zoai:ri.conicet.gov.ar:11336/21144instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:02:20.431CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
A Berger-type theorem for metric connections with skew-symmetric torsion |
title |
A Berger-type theorem for metric connections with skew-symmetric torsion |
spellingShingle |
A Berger-type theorem for metric connections with skew-symmetric torsion Reggiani, Silvio Nicolás Metric Connection Flat Connection Skew-Symmetric Torsion Holonomy |
title_short |
A Berger-type theorem for metric connections with skew-symmetric torsion |
title_full |
A Berger-type theorem for metric connections with skew-symmetric torsion |
title_fullStr |
A Berger-type theorem for metric connections with skew-symmetric torsion |
title_full_unstemmed |
A Berger-type theorem for metric connections with skew-symmetric torsion |
title_sort |
A Berger-type theorem for metric connections with skew-symmetric torsion |
dc.creator.none.fl_str_mv |
Reggiani, Silvio Nicolás |
author |
Reggiani, Silvio Nicolás |
author_facet |
Reggiani, Silvio Nicolás |
author_role |
author |
dc.subject.none.fl_str_mv |
Metric Connection Flat Connection Skew-Symmetric Torsion Holonomy |
topic |
Metric Connection Flat Connection Skew-Symmetric Torsion Holonomy |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We prove a Berger-type theorem which asserts that if the orthogonal subgroup generated by the torsion tensor (pulled back to a point by parallel transport) of a metric connection with skew-symmetric torsion is not transitive on the sphere, then the space must be locally isometric to a Lie group with a bi-invariant metric or its symmetric dual (we assume the space to be locally irreducible). We also prove that a (simple) Lie group with a bi-invariant metric admits only two flat metric connections with skew-symmetric torsion: the two flat canonical connections. In particular, we get a refinement of a well-known theorem of Cartan and Schouten. Finally, we show that the holonomy group of a metric connection with skew-symmetric torsion on these spaces generically coincides with the Riemannian holonomy. Fil: Reggiani, Silvio Nicolás. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
description |
We prove a Berger-type theorem which asserts that if the orthogonal subgroup generated by the torsion tensor (pulled back to a point by parallel transport) of a metric connection with skew-symmetric torsion is not transitive on the sphere, then the space must be locally isometric to a Lie group with a bi-invariant metric or its symmetric dual (we assume the space to be locally irreducible). We also prove that a (simple) Lie group with a bi-invariant metric admits only two flat metric connections with skew-symmetric torsion: the two flat canonical connections. In particular, we get a refinement of a well-known theorem of Cartan and Schouten. Finally, we show that the holonomy group of a metric connection with skew-symmetric torsion on these spaces generically coincides with the Riemannian holonomy. |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/21144 Reggiani, Silvio Nicolás; A Berger-type theorem for metric connections with skew-symmetric torsion; Elsevier Science; Journal Of Geometry And Physics; 65; 12-2012; 26-34 0393-0440 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/21144 |
identifier_str_mv |
Reggiani, Silvio Nicolás; A Berger-type theorem for metric connections with skew-symmetric torsion; Elsevier Science; Journal Of Geometry And Physics; 65; 12-2012; 26-34 0393-0440 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.geomphys.2012.11.012 info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0393044012002124 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science |
publisher.none.fl_str_mv |
Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613826276753408 |
score |
13.070432 |