A Berger-type theorem for metric connections with skew-symmetric torsion

Autores
Reggiani, Silvio Nicolás
Año de publicación
2012
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We prove a Berger-type theorem which asserts that if the orthogonal subgroup generated by the torsion tensor (pulled back to a point by parallel transport) of a metric connection with skew-symmetric torsion is not transitive on the sphere, then the space must be locally isometric to a Lie group with a bi-invariant metric or its symmetric dual (we assume the space to be locally irreducible). We also prove that a (simple) Lie group with a bi-invariant metric admits only two flat metric connections with skew-symmetric torsion: the two flat canonical connections. In particular, we get a refinement of a well-known theorem of Cartan and Schouten. Finally, we show that the holonomy group of a metric connection with skew-symmetric torsion on these spaces generically coincides with the Riemannian holonomy.
Fil: Reggiani, Silvio Nicolás. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Materia
Metric Connection
Flat Connection
Skew-Symmetric Torsion
Holonomy
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/21144

id CONICETDig_ad74260e342d352dc6162ac546f139a2
oai_identifier_str oai:ri.conicet.gov.ar:11336/21144
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling A Berger-type theorem for metric connections with skew-symmetric torsionReggiani, Silvio NicolásMetric ConnectionFlat ConnectionSkew-Symmetric TorsionHolonomyhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We prove a Berger-type theorem which asserts that if the orthogonal subgroup generated by the torsion tensor (pulled back to a point by parallel transport) of a metric connection with skew-symmetric torsion is not transitive on the sphere, then the space must be locally isometric to a Lie group with a bi-invariant metric or its symmetric dual (we assume the space to be locally irreducible). We also prove that a (simple) Lie group with a bi-invariant metric admits only two flat metric connections with skew-symmetric torsion: the two flat canonical connections. In particular, we get a refinement of a well-known theorem of Cartan and Schouten. Finally, we show that the holonomy group of a metric connection with skew-symmetric torsion on these spaces generically coincides with the Riemannian holonomy.Fil: Reggiani, Silvio Nicolás. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaElsevier Science2012-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/21144Reggiani, Silvio Nicolás; A Berger-type theorem for metric connections with skew-symmetric torsion; Elsevier Science; Journal Of Geometry And Physics; 65; 12-2012; 26-340393-0440CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.geomphys.2012.11.012info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0393044012002124info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:02:20Zoai:ri.conicet.gov.ar:11336/21144instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:02:20.431CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv A Berger-type theorem for metric connections with skew-symmetric torsion
title A Berger-type theorem for metric connections with skew-symmetric torsion
spellingShingle A Berger-type theorem for metric connections with skew-symmetric torsion
Reggiani, Silvio Nicolás
Metric Connection
Flat Connection
Skew-Symmetric Torsion
Holonomy
title_short A Berger-type theorem for metric connections with skew-symmetric torsion
title_full A Berger-type theorem for metric connections with skew-symmetric torsion
title_fullStr A Berger-type theorem for metric connections with skew-symmetric torsion
title_full_unstemmed A Berger-type theorem for metric connections with skew-symmetric torsion
title_sort A Berger-type theorem for metric connections with skew-symmetric torsion
dc.creator.none.fl_str_mv Reggiani, Silvio Nicolás
author Reggiani, Silvio Nicolás
author_facet Reggiani, Silvio Nicolás
author_role author
dc.subject.none.fl_str_mv Metric Connection
Flat Connection
Skew-Symmetric Torsion
Holonomy
topic Metric Connection
Flat Connection
Skew-Symmetric Torsion
Holonomy
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We prove a Berger-type theorem which asserts that if the orthogonal subgroup generated by the torsion tensor (pulled back to a point by parallel transport) of a metric connection with skew-symmetric torsion is not transitive on the sphere, then the space must be locally isometric to a Lie group with a bi-invariant metric or its symmetric dual (we assume the space to be locally irreducible). We also prove that a (simple) Lie group with a bi-invariant metric admits only two flat metric connections with skew-symmetric torsion: the two flat canonical connections. In particular, we get a refinement of a well-known theorem of Cartan and Schouten. Finally, we show that the holonomy group of a metric connection with skew-symmetric torsion on these spaces generically coincides with the Riemannian holonomy.
Fil: Reggiani, Silvio Nicolás. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
description We prove a Berger-type theorem which asserts that if the orthogonal subgroup generated by the torsion tensor (pulled back to a point by parallel transport) of a metric connection with skew-symmetric torsion is not transitive on the sphere, then the space must be locally isometric to a Lie group with a bi-invariant metric or its symmetric dual (we assume the space to be locally irreducible). We also prove that a (simple) Lie group with a bi-invariant metric admits only two flat metric connections with skew-symmetric torsion: the two flat canonical connections. In particular, we get a refinement of a well-known theorem of Cartan and Schouten. Finally, we show that the holonomy group of a metric connection with skew-symmetric torsion on these spaces generically coincides with the Riemannian holonomy.
publishDate 2012
dc.date.none.fl_str_mv 2012-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/21144
Reggiani, Silvio Nicolás; A Berger-type theorem for metric connections with skew-symmetric torsion; Elsevier Science; Journal Of Geometry And Physics; 65; 12-2012; 26-34
0393-0440
CONICET Digital
CONICET
url http://hdl.handle.net/11336/21144
identifier_str_mv Reggiani, Silvio Nicolás; A Berger-type theorem for metric connections with skew-symmetric torsion; Elsevier Science; Journal Of Geometry And Physics; 65; 12-2012; 26-34
0393-0440
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.geomphys.2012.11.012
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0393044012002124
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier Science
publisher.none.fl_str_mv Elsevier Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613826276753408
score 13.070432