Building large-scale spatially explicit models to predict the distribution of suitable habitat patches for the Greater rhea (Rhea americana), a near-threatened species

Autores
Giordano, Paola Florencia; Navarro, Joaquin Luis; Martella, Monica Beatriz
Año de publicación
2010
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We developed large-scale spatially explicit models to predict the distribution of suitable habitat patches for the Greater rhea (Rhea americana), a near-threatened species, in two areas of central Argentina with different land use: a grassland area (ca. 4943 km2) mainly devoted to cattle grazing and an agro-ecosystem area (ca. 4006 km2) mostly used for crop production. The models were developed using logistic regression and were based on current records of Greater rhea occurrence coupled with remote sensing data, including land cover and human presence variables. The habitat suitability maps generated were used to predict the suitable habitat patch structure for wild rhea populations in each area. Fifty-one percent of the total grassland area was suitable for the species, being represented by a single large patch that included 62% of the individual locations. In the agro-ecosystem, only 28% of the total area was suitable, which was distributed among four patches. Seventy percent of rhea observations were in suitable habitat, with all rheas grouped in the largest patch. Conservation efforts for preserving wild rhea populations should be focused on maintaining habitats similar to grasslands, which are less profitable for landowners at present. Consequently, the protection of the pampas grasslands, a key habitat for this species as well as for others with similar habitat requirements, will demand strong conservation actions through the reconciliation of interests between producers and conservationists, since the proportion of croplands is increasing.
Fil: Giordano, Paola Florencia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Diversidad y Ecología Animal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto de Diversidad y Ecología Animal; Argentina
Fil: Navarro, Joaquin Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Diversidad y Ecología Animal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto de Diversidad y Ecología Animal; Argentina
Fil: Martella, Monica Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Diversidad y Ecología Animal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto de Diversidad y Ecología Animal; Argentina
Materia
GEOGRAPHIC INFORMATION SYSTEM
GRASSLAND PAMPAS
HABITAT SUITABILITY MODEL
LAND-USE CHANGES
LOGISTIC REGRESSION
RHEA AMERICANA CONSERVATION
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/186600

id CONICETDig_ad678a79d39032c361823985506c2f84
oai_identifier_str oai:ri.conicet.gov.ar:11336/186600
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Building large-scale spatially explicit models to predict the distribution of suitable habitat patches for the Greater rhea (Rhea americana), a near-threatened speciesGiordano, Paola FlorenciaNavarro, Joaquin LuisMartella, Monica BeatrizGEOGRAPHIC INFORMATION SYSTEMGRASSLAND PAMPASHABITAT SUITABILITY MODELLAND-USE CHANGESLOGISTIC REGRESSIONRHEA AMERICANA CONSERVATIONhttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1We developed large-scale spatially explicit models to predict the distribution of suitable habitat patches for the Greater rhea (Rhea americana), a near-threatened species, in two areas of central Argentina with different land use: a grassland area (ca. 4943 km2) mainly devoted to cattle grazing and an agro-ecosystem area (ca. 4006 km2) mostly used for crop production. The models were developed using logistic regression and were based on current records of Greater rhea occurrence coupled with remote sensing data, including land cover and human presence variables. The habitat suitability maps generated were used to predict the suitable habitat patch structure for wild rhea populations in each area. Fifty-one percent of the total grassland area was suitable for the species, being represented by a single large patch that included 62% of the individual locations. In the agro-ecosystem, only 28% of the total area was suitable, which was distributed among four patches. Seventy percent of rhea observations were in suitable habitat, with all rheas grouped in the largest patch. Conservation efforts for preserving wild rhea populations should be focused on maintaining habitats similar to grasslands, which are less profitable for landowners at present. Consequently, the protection of the pampas grasslands, a key habitat for this species as well as for others with similar habitat requirements, will demand strong conservation actions through the reconciliation of interests between producers and conservationists, since the proportion of croplands is increasing.Fil: Giordano, Paola Florencia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Diversidad y Ecología Animal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto de Diversidad y Ecología Animal; ArgentinaFil: Navarro, Joaquin Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Diversidad y Ecología Animal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto de Diversidad y Ecología Animal; ArgentinaFil: Martella, Monica Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Diversidad y Ecología Animal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto de Diversidad y Ecología Animal; ArgentinaElsevier2010-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/186600Giordano, Paola Florencia; Navarro, Joaquin Luis; Martella, Monica Beatriz; Building large-scale spatially explicit models to predict the distribution of suitable habitat patches for the Greater rhea (Rhea americana), a near-threatened species; Elsevier; Biological Conservation; 143; 2; 2-2010; 357-3650006-3207CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.biocon.2009.10.022info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0006320709004637info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:25:11Zoai:ri.conicet.gov.ar:11336/186600instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:25:11.921CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Building large-scale spatially explicit models to predict the distribution of suitable habitat patches for the Greater rhea (Rhea americana), a near-threatened species
title Building large-scale spatially explicit models to predict the distribution of suitable habitat patches for the Greater rhea (Rhea americana), a near-threatened species
spellingShingle Building large-scale spatially explicit models to predict the distribution of suitable habitat patches for the Greater rhea (Rhea americana), a near-threatened species
Giordano, Paola Florencia
GEOGRAPHIC INFORMATION SYSTEM
GRASSLAND PAMPAS
HABITAT SUITABILITY MODEL
LAND-USE CHANGES
LOGISTIC REGRESSION
RHEA AMERICANA CONSERVATION
title_short Building large-scale spatially explicit models to predict the distribution of suitable habitat patches for the Greater rhea (Rhea americana), a near-threatened species
title_full Building large-scale spatially explicit models to predict the distribution of suitable habitat patches for the Greater rhea (Rhea americana), a near-threatened species
title_fullStr Building large-scale spatially explicit models to predict the distribution of suitable habitat patches for the Greater rhea (Rhea americana), a near-threatened species
title_full_unstemmed Building large-scale spatially explicit models to predict the distribution of suitable habitat patches for the Greater rhea (Rhea americana), a near-threatened species
title_sort Building large-scale spatially explicit models to predict the distribution of suitable habitat patches for the Greater rhea (Rhea americana), a near-threatened species
dc.creator.none.fl_str_mv Giordano, Paola Florencia
Navarro, Joaquin Luis
Martella, Monica Beatriz
author Giordano, Paola Florencia
author_facet Giordano, Paola Florencia
Navarro, Joaquin Luis
Martella, Monica Beatriz
author_role author
author2 Navarro, Joaquin Luis
Martella, Monica Beatriz
author2_role author
author
dc.subject.none.fl_str_mv GEOGRAPHIC INFORMATION SYSTEM
GRASSLAND PAMPAS
HABITAT SUITABILITY MODEL
LAND-USE CHANGES
LOGISTIC REGRESSION
RHEA AMERICANA CONSERVATION
topic GEOGRAPHIC INFORMATION SYSTEM
GRASSLAND PAMPAS
HABITAT SUITABILITY MODEL
LAND-USE CHANGES
LOGISTIC REGRESSION
RHEA AMERICANA CONSERVATION
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.6
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We developed large-scale spatially explicit models to predict the distribution of suitable habitat patches for the Greater rhea (Rhea americana), a near-threatened species, in two areas of central Argentina with different land use: a grassland area (ca. 4943 km2) mainly devoted to cattle grazing and an agro-ecosystem area (ca. 4006 km2) mostly used for crop production. The models were developed using logistic regression and were based on current records of Greater rhea occurrence coupled with remote sensing data, including land cover and human presence variables. The habitat suitability maps generated were used to predict the suitable habitat patch structure for wild rhea populations in each area. Fifty-one percent of the total grassland area was suitable for the species, being represented by a single large patch that included 62% of the individual locations. In the agro-ecosystem, only 28% of the total area was suitable, which was distributed among four patches. Seventy percent of rhea observations were in suitable habitat, with all rheas grouped in the largest patch. Conservation efforts for preserving wild rhea populations should be focused on maintaining habitats similar to grasslands, which are less profitable for landowners at present. Consequently, the protection of the pampas grasslands, a key habitat for this species as well as for others with similar habitat requirements, will demand strong conservation actions through the reconciliation of interests between producers and conservationists, since the proportion of croplands is increasing.
Fil: Giordano, Paola Florencia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Diversidad y Ecología Animal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto de Diversidad y Ecología Animal; Argentina
Fil: Navarro, Joaquin Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Diversidad y Ecología Animal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto de Diversidad y Ecología Animal; Argentina
Fil: Martella, Monica Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Diversidad y Ecología Animal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto de Diversidad y Ecología Animal; Argentina
description We developed large-scale spatially explicit models to predict the distribution of suitable habitat patches for the Greater rhea (Rhea americana), a near-threatened species, in two areas of central Argentina with different land use: a grassland area (ca. 4943 km2) mainly devoted to cattle grazing and an agro-ecosystem area (ca. 4006 km2) mostly used for crop production. The models were developed using logistic regression and were based on current records of Greater rhea occurrence coupled with remote sensing data, including land cover and human presence variables. The habitat suitability maps generated were used to predict the suitable habitat patch structure for wild rhea populations in each area. Fifty-one percent of the total grassland area was suitable for the species, being represented by a single large patch that included 62% of the individual locations. In the agro-ecosystem, only 28% of the total area was suitable, which was distributed among four patches. Seventy percent of rhea observations were in suitable habitat, with all rheas grouped in the largest patch. Conservation efforts for preserving wild rhea populations should be focused on maintaining habitats similar to grasslands, which are less profitable for landowners at present. Consequently, the protection of the pampas grasslands, a key habitat for this species as well as for others with similar habitat requirements, will demand strong conservation actions through the reconciliation of interests between producers and conservationists, since the proportion of croplands is increasing.
publishDate 2010
dc.date.none.fl_str_mv 2010-02
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/186600
Giordano, Paola Florencia; Navarro, Joaquin Luis; Martella, Monica Beatriz; Building large-scale spatially explicit models to predict the distribution of suitable habitat patches for the Greater rhea (Rhea americana), a near-threatened species; Elsevier; Biological Conservation; 143; 2; 2-2010; 357-365
0006-3207
CONICET Digital
CONICET
url http://hdl.handle.net/11336/186600
identifier_str_mv Giordano, Paola Florencia; Navarro, Joaquin Luis; Martella, Monica Beatriz; Building large-scale spatially explicit models to predict the distribution of suitable habitat patches for the Greater rhea (Rhea americana), a near-threatened species; Elsevier; Biological Conservation; 143; 2; 2-2010; 357-365
0006-3207
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.biocon.2009.10.022
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0006320709004637
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846781798474842112
score 12.982451