One-Step MIBK Synthesis: A New Process from 2-Propanol

Autores
Di Cosimo, Juana Isabel; Torres, Gerardo Carlos; Apesteguia, Carlos Rodolfo
Año de publicación
2002
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The one-step MIBK synthesis from 2-propanol was investigated as an alternative process to current conventional technology that produces MIBK from acetone. The reaction was studied at 473 K and atmospheric pressure using bifunctional Cu-base catalysts. Single MIOx, binary MIMIIOx, and Cu-containing CuMI(MIIOx mixed oxides, where MI and MII are metal cations such as Mg2+, Al3+, or Ce3+, were obtained by thermal decomposition of precipitated precursors. The density and strength of surface basic sites were obtained by CO2 chemisorption and by temperature-programmed desorption (TPD) of CO2, whereas the acid site densities were measured by TPD of NH3. The MIBK synthesis reaction network involves consecutively the initial 2-propanol dehydrogenation to acetone, the aldol condensation of acetone to mesityl oxide, and the final hydrogenation of this compound to MIBK. Cu/SiO2 promoted 2-propanol dehydrogenation to acetone but did not form any C6 condensation products. When copper was supported on protonic HY zeolite, 2-propanol was essentially dehydrated to propylene and the formation of acetone was negligible. Bifunctional Cu-base catalysts were active and selective for MIBK synthesis. The highest MIBK formation rates were obtained on Cu-base solids containing a high density of medium-strength Brønsted base-weak Lewis acid pair sites for promoting the acetone aldol condensation step. CuMg10Al7Ox was the best catalyst because it contained in intimate contact highly dispersed Cu0 crystallites with proper Al3+ Lewis sites and Mg+2–O2− basic pairs and efficiently combines the active sites required for consecutive reactions leading to MIBK. Catalysts containing strongly basic O2− sites, such as CuMg10Ox and CuMg10Ce2Ox, presented lower condensation rates because isolated O2− hindered stabilization of anionic intermediates for acetone condensation. The effect that the reacting atmosphere (N2 or H2) has on catalyst activity and selectivity was investigated on CuMg10Al7Ox. It was found that the catalyst activity is enhanced in N2, but for a given 2-propanol conversion the selectivity for C6 aldol condensation products is higher in hydrogen. MIBK yields as high as 25% were achieved in comparison to the 30% typically obtained in current commercial high-pressure processes from acetone.
Fil: Di Cosimo, Juana Isabel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigaciones en Catálisis y Petroquímica ; Argentina
Fil: Torres, Gerardo Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigaciones en Catálisis y Petroquímica ; Argentina
Fil: Apesteguia, Carlos Rodolfo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigaciones en Catálisis y Petroquímica ; Argentina
Materia
Mibk Synthesis
Bifunctional Catalysis
2-Propanol Conversion
Aldol Condensation
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/40206

id CONICETDig_ad306fc1efb4000350ec13477990ae56
oai_identifier_str oai:ri.conicet.gov.ar:11336/40206
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling One-Step MIBK Synthesis: A New Process from 2-PropanolDi Cosimo, Juana IsabelTorres, Gerardo CarlosApesteguia, Carlos RodolfoMibk SynthesisBifunctional Catalysis2-Propanol ConversionAldol Condensationhttps://purl.org/becyt/ford/2.4https://purl.org/becyt/ford/2The one-step MIBK synthesis from 2-propanol was investigated as an alternative process to current conventional technology that produces MIBK from acetone. The reaction was studied at 473 K and atmospheric pressure using bifunctional Cu-base catalysts. Single MIOx, binary MIMIIOx, and Cu-containing CuMI(MIIOx mixed oxides, where MI and MII are metal cations such as Mg2+, Al3+, or Ce3+, were obtained by thermal decomposition of precipitated precursors. The density and strength of surface basic sites were obtained by CO2 chemisorption and by temperature-programmed desorption (TPD) of CO2, whereas the acid site densities were measured by TPD of NH3. The MIBK synthesis reaction network involves consecutively the initial 2-propanol dehydrogenation to acetone, the aldol condensation of acetone to mesityl oxide, and the final hydrogenation of this compound to MIBK. Cu/SiO2 promoted 2-propanol dehydrogenation to acetone but did not form any C6 condensation products. When copper was supported on protonic HY zeolite, 2-propanol was essentially dehydrated to propylene and the formation of acetone was negligible. Bifunctional Cu-base catalysts were active and selective for MIBK synthesis. The highest MIBK formation rates were obtained on Cu-base solids containing a high density of medium-strength Brønsted base-weak Lewis acid pair sites for promoting the acetone aldol condensation step. CuMg10Al7Ox was the best catalyst because it contained in intimate contact highly dispersed Cu0 crystallites with proper Al3+ Lewis sites and Mg+2–O2− basic pairs and efficiently combines the active sites required for consecutive reactions leading to MIBK. Catalysts containing strongly basic O2− sites, such as CuMg10Ox and CuMg10Ce2Ox, presented lower condensation rates because isolated O2− hindered stabilization of anionic intermediates for acetone condensation. The effect that the reacting atmosphere (N2 or H2) has on catalyst activity and selectivity was investigated on CuMg10Al7Ox. It was found that the catalyst activity is enhanced in N2, but for a given 2-propanol conversion the selectivity for C6 aldol condensation products is higher in hydrogen. MIBK yields as high as 25% were achieved in comparison to the 30% typically obtained in current commercial high-pressure processes from acetone.Fil: Di Cosimo, Juana Isabel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigaciones en Catálisis y Petroquímica ; ArgentinaFil: Torres, Gerardo Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigaciones en Catálisis y Petroquímica ; ArgentinaFil: Apesteguia, Carlos Rodolfo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigaciones en Catálisis y Petroquímica ; ArgentinaElsevier Science2002-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/40206Di Cosimo, Juana Isabel; Torres, Gerardo Carlos; Apesteguia, Carlos Rodolfo; One-Step MIBK Synthesis: A New Process from 2-Propanol; Elsevier Science; Journal of Catalysis; 208; 1; 5-2002; 114-1230021-9517CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1006/jcat.2002.3551info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0021951702935517info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:10:28Zoai:ri.conicet.gov.ar:11336/40206instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:10:28.523CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv One-Step MIBK Synthesis: A New Process from 2-Propanol
title One-Step MIBK Synthesis: A New Process from 2-Propanol
spellingShingle One-Step MIBK Synthesis: A New Process from 2-Propanol
Di Cosimo, Juana Isabel
Mibk Synthesis
Bifunctional Catalysis
2-Propanol Conversion
Aldol Condensation
title_short One-Step MIBK Synthesis: A New Process from 2-Propanol
title_full One-Step MIBK Synthesis: A New Process from 2-Propanol
title_fullStr One-Step MIBK Synthesis: A New Process from 2-Propanol
title_full_unstemmed One-Step MIBK Synthesis: A New Process from 2-Propanol
title_sort One-Step MIBK Synthesis: A New Process from 2-Propanol
dc.creator.none.fl_str_mv Di Cosimo, Juana Isabel
Torres, Gerardo Carlos
Apesteguia, Carlos Rodolfo
author Di Cosimo, Juana Isabel
author_facet Di Cosimo, Juana Isabel
Torres, Gerardo Carlos
Apesteguia, Carlos Rodolfo
author_role author
author2 Torres, Gerardo Carlos
Apesteguia, Carlos Rodolfo
author2_role author
author
dc.subject.none.fl_str_mv Mibk Synthesis
Bifunctional Catalysis
2-Propanol Conversion
Aldol Condensation
topic Mibk Synthesis
Bifunctional Catalysis
2-Propanol Conversion
Aldol Condensation
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.4
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv The one-step MIBK synthesis from 2-propanol was investigated as an alternative process to current conventional technology that produces MIBK from acetone. The reaction was studied at 473 K and atmospheric pressure using bifunctional Cu-base catalysts. Single MIOx, binary MIMIIOx, and Cu-containing CuMI(MIIOx mixed oxides, where MI and MII are metal cations such as Mg2+, Al3+, or Ce3+, were obtained by thermal decomposition of precipitated precursors. The density and strength of surface basic sites were obtained by CO2 chemisorption and by temperature-programmed desorption (TPD) of CO2, whereas the acid site densities were measured by TPD of NH3. The MIBK synthesis reaction network involves consecutively the initial 2-propanol dehydrogenation to acetone, the aldol condensation of acetone to mesityl oxide, and the final hydrogenation of this compound to MIBK. Cu/SiO2 promoted 2-propanol dehydrogenation to acetone but did not form any C6 condensation products. When copper was supported on protonic HY zeolite, 2-propanol was essentially dehydrated to propylene and the formation of acetone was negligible. Bifunctional Cu-base catalysts were active and selective for MIBK synthesis. The highest MIBK formation rates were obtained on Cu-base solids containing a high density of medium-strength Brønsted base-weak Lewis acid pair sites for promoting the acetone aldol condensation step. CuMg10Al7Ox was the best catalyst because it contained in intimate contact highly dispersed Cu0 crystallites with proper Al3+ Lewis sites and Mg+2–O2− basic pairs and efficiently combines the active sites required for consecutive reactions leading to MIBK. Catalysts containing strongly basic O2− sites, such as CuMg10Ox and CuMg10Ce2Ox, presented lower condensation rates because isolated O2− hindered stabilization of anionic intermediates for acetone condensation. The effect that the reacting atmosphere (N2 or H2) has on catalyst activity and selectivity was investigated on CuMg10Al7Ox. It was found that the catalyst activity is enhanced in N2, but for a given 2-propanol conversion the selectivity for C6 aldol condensation products is higher in hydrogen. MIBK yields as high as 25% were achieved in comparison to the 30% typically obtained in current commercial high-pressure processes from acetone.
Fil: Di Cosimo, Juana Isabel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigaciones en Catálisis y Petroquímica ; Argentina
Fil: Torres, Gerardo Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigaciones en Catálisis y Petroquímica ; Argentina
Fil: Apesteguia, Carlos Rodolfo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigaciones en Catálisis y Petroquímica ; Argentina
description The one-step MIBK synthesis from 2-propanol was investigated as an alternative process to current conventional technology that produces MIBK from acetone. The reaction was studied at 473 K and atmospheric pressure using bifunctional Cu-base catalysts. Single MIOx, binary MIMIIOx, and Cu-containing CuMI(MIIOx mixed oxides, where MI and MII are metal cations such as Mg2+, Al3+, or Ce3+, were obtained by thermal decomposition of precipitated precursors. The density and strength of surface basic sites were obtained by CO2 chemisorption and by temperature-programmed desorption (TPD) of CO2, whereas the acid site densities were measured by TPD of NH3. The MIBK synthesis reaction network involves consecutively the initial 2-propanol dehydrogenation to acetone, the aldol condensation of acetone to mesityl oxide, and the final hydrogenation of this compound to MIBK. Cu/SiO2 promoted 2-propanol dehydrogenation to acetone but did not form any C6 condensation products. When copper was supported on protonic HY zeolite, 2-propanol was essentially dehydrated to propylene and the formation of acetone was negligible. Bifunctional Cu-base catalysts were active and selective for MIBK synthesis. The highest MIBK formation rates were obtained on Cu-base solids containing a high density of medium-strength Brønsted base-weak Lewis acid pair sites for promoting the acetone aldol condensation step. CuMg10Al7Ox was the best catalyst because it contained in intimate contact highly dispersed Cu0 crystallites with proper Al3+ Lewis sites and Mg+2–O2− basic pairs and efficiently combines the active sites required for consecutive reactions leading to MIBK. Catalysts containing strongly basic O2− sites, such as CuMg10Ox and CuMg10Ce2Ox, presented lower condensation rates because isolated O2− hindered stabilization of anionic intermediates for acetone condensation. The effect that the reacting atmosphere (N2 or H2) has on catalyst activity and selectivity was investigated on CuMg10Al7Ox. It was found that the catalyst activity is enhanced in N2, but for a given 2-propanol conversion the selectivity for C6 aldol condensation products is higher in hydrogen. MIBK yields as high as 25% were achieved in comparison to the 30% typically obtained in current commercial high-pressure processes from acetone.
publishDate 2002
dc.date.none.fl_str_mv 2002-05
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/40206
Di Cosimo, Juana Isabel; Torres, Gerardo Carlos; Apesteguia, Carlos Rodolfo; One-Step MIBK Synthesis: A New Process from 2-Propanol; Elsevier Science; Journal of Catalysis; 208; 1; 5-2002; 114-123
0021-9517
CONICET Digital
CONICET
url http://hdl.handle.net/11336/40206
identifier_str_mv Di Cosimo, Juana Isabel; Torres, Gerardo Carlos; Apesteguia, Carlos Rodolfo; One-Step MIBK Synthesis: A New Process from 2-Propanol; Elsevier Science; Journal of Catalysis; 208; 1; 5-2002; 114-123
0021-9517
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1006/jcat.2002.3551
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0021951702935517
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier Science
publisher.none.fl_str_mv Elsevier Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842270120777351168
score 13.13397