Quantitative Raman determination of hydrogen peroxide using the solvent as internal standard: Online application in the direct synthesis of hydrogen peroxide

Autores
Moreno, T.; Morán López, M. A.; Huerta Illera, I.; Piqueras, Cristian Martin; Sanz Arranz, A.; García Serna, J.; Cocero, María José
Año de publicación
2011
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
H2O2 concentrations in aqueous solutions have been determined by means of a 532nm Raman spectrometer. H2O2 is a highly demanded green oxidant agent, and its direct synthesis from H2 and O2 is a promising alternative to the traditional production process. Raman spectroscopy is a fast, non-destructive and reliable analytical technique for H2O2 quantification, which avoids the drawbacks of traditional iodometric determinations (sample extraction, preparation of the reagents and a long time of analysis). A high pressure view cell has been designed to facilitate the measuring at high pressures, which are often found in a direct synthesis process. A thorough calibration model has been developed, and it has been validated at high pressure (5.0MPa) and temperature (up to 45°C). The solvent (water) was used as internal standard to correct multiplicative distortions. The validation of the analytical technique produced reproducible and accurate results compared against classic iodometric titration, allowing the use of a single calibration model for a range of reaction conditions. The feasible use of Raman spectroscopy for real-time quantitative reaction monitoring has been established by analysing the decomposition reaction of H2O2 under different conditions. © 2010 Elsevier B.V.
Fil: Moreno, T.. Universidad de Valladolid; España
Fil: Morán López, M. A.. Universidad de Valladolid; España
Fil: Huerta Illera, I.. Universidad de Valladolid; España
Fil: Piqueras, Cristian Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina
Fil: Sanz Arranz, A.. Universidad de Valladolid; España
Fil: García Serna, J.. Universidad de Valladolid; España
Fil: Cocero, María José. Universidad de Valladolid; España
Materia
H2o2 Decomposition
H2o2 Determination
H2o2 Direct Synthesis
Raman Spectroscopy
Reaction Monitoring
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/57731

id CONICETDig_ad276aefc7728cb1935e7d346d74a554
oai_identifier_str oai:ri.conicet.gov.ar:11336/57731
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Quantitative Raman determination of hydrogen peroxide using the solvent as internal standard: Online application in the direct synthesis of hydrogen peroxideMoreno, T.Morán López, M. A.Huerta Illera, I.Piqueras, Cristian MartinSanz Arranz, A.García Serna, J.Cocero, María JoséH2o2 DecompositionH2o2 DeterminationH2o2 Direct SynthesisRaman SpectroscopyReaction Monitoringhttps://purl.org/becyt/ford/2.4https://purl.org/becyt/ford/2H2O2 concentrations in aqueous solutions have been determined by means of a 532nm Raman spectrometer. H2O2 is a highly demanded green oxidant agent, and its direct synthesis from H2 and O2 is a promising alternative to the traditional production process. Raman spectroscopy is a fast, non-destructive and reliable analytical technique for H2O2 quantification, which avoids the drawbacks of traditional iodometric determinations (sample extraction, preparation of the reagents and a long time of analysis). A high pressure view cell has been designed to facilitate the measuring at high pressures, which are often found in a direct synthesis process. A thorough calibration model has been developed, and it has been validated at high pressure (5.0MPa) and temperature (up to 45°C). The solvent (water) was used as internal standard to correct multiplicative distortions. The validation of the analytical technique produced reproducible and accurate results compared against classic iodometric titration, allowing the use of a single calibration model for a range of reaction conditions. The feasible use of Raman spectroscopy for real-time quantitative reaction monitoring has been established by analysing the decomposition reaction of H2O2 under different conditions. © 2010 Elsevier B.V.Fil: Moreno, T.. Universidad de Valladolid; EspañaFil: Morán López, M. A.. Universidad de Valladolid; EspañaFil: Huerta Illera, I.. Universidad de Valladolid; EspañaFil: Piqueras, Cristian Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; ArgentinaFil: Sanz Arranz, A.. Universidad de Valladolid; EspañaFil: García Serna, J.. Universidad de Valladolid; EspañaFil: Cocero, María José. Universidad de Valladolid; EspañaElsevier Science Sa2011-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/57731Moreno, T.; Morán López, M. A.; Huerta Illera, I.; Piqueras, Cristian Martin; Sanz Arranz, A.; et al.; Quantitative Raman determination of hydrogen peroxide using the solvent as internal standard: Online application in the direct synthesis of hydrogen peroxide; Elsevier Science Sa; Chemical Engineering Journal; 166; 3; 2-2011; 1061-10651385-8947CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.cej.2010.11.068info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S1385894710011642info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:25:31Zoai:ri.conicet.gov.ar:11336/57731instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:25:31.97CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Quantitative Raman determination of hydrogen peroxide using the solvent as internal standard: Online application in the direct synthesis of hydrogen peroxide
title Quantitative Raman determination of hydrogen peroxide using the solvent as internal standard: Online application in the direct synthesis of hydrogen peroxide
spellingShingle Quantitative Raman determination of hydrogen peroxide using the solvent as internal standard: Online application in the direct synthesis of hydrogen peroxide
Moreno, T.
H2o2 Decomposition
H2o2 Determination
H2o2 Direct Synthesis
Raman Spectroscopy
Reaction Monitoring
title_short Quantitative Raman determination of hydrogen peroxide using the solvent as internal standard: Online application in the direct synthesis of hydrogen peroxide
title_full Quantitative Raman determination of hydrogen peroxide using the solvent as internal standard: Online application in the direct synthesis of hydrogen peroxide
title_fullStr Quantitative Raman determination of hydrogen peroxide using the solvent as internal standard: Online application in the direct synthesis of hydrogen peroxide
title_full_unstemmed Quantitative Raman determination of hydrogen peroxide using the solvent as internal standard: Online application in the direct synthesis of hydrogen peroxide
title_sort Quantitative Raman determination of hydrogen peroxide using the solvent as internal standard: Online application in the direct synthesis of hydrogen peroxide
dc.creator.none.fl_str_mv Moreno, T.
Morán López, M. A.
Huerta Illera, I.
Piqueras, Cristian Martin
Sanz Arranz, A.
García Serna, J.
Cocero, María José
author Moreno, T.
author_facet Moreno, T.
Morán López, M. A.
Huerta Illera, I.
Piqueras, Cristian Martin
Sanz Arranz, A.
García Serna, J.
Cocero, María José
author_role author
author2 Morán López, M. A.
Huerta Illera, I.
Piqueras, Cristian Martin
Sanz Arranz, A.
García Serna, J.
Cocero, María José
author2_role author
author
author
author
author
author
dc.subject.none.fl_str_mv H2o2 Decomposition
H2o2 Determination
H2o2 Direct Synthesis
Raman Spectroscopy
Reaction Monitoring
topic H2o2 Decomposition
H2o2 Determination
H2o2 Direct Synthesis
Raman Spectroscopy
Reaction Monitoring
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.4
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv H2O2 concentrations in aqueous solutions have been determined by means of a 532nm Raman spectrometer. H2O2 is a highly demanded green oxidant agent, and its direct synthesis from H2 and O2 is a promising alternative to the traditional production process. Raman spectroscopy is a fast, non-destructive and reliable analytical technique for H2O2 quantification, which avoids the drawbacks of traditional iodometric determinations (sample extraction, preparation of the reagents and a long time of analysis). A high pressure view cell has been designed to facilitate the measuring at high pressures, which are often found in a direct synthesis process. A thorough calibration model has been developed, and it has been validated at high pressure (5.0MPa) and temperature (up to 45°C). The solvent (water) was used as internal standard to correct multiplicative distortions. The validation of the analytical technique produced reproducible and accurate results compared against classic iodometric titration, allowing the use of a single calibration model for a range of reaction conditions. The feasible use of Raman spectroscopy for real-time quantitative reaction monitoring has been established by analysing the decomposition reaction of H2O2 under different conditions. © 2010 Elsevier B.V.
Fil: Moreno, T.. Universidad de Valladolid; España
Fil: Morán López, M. A.. Universidad de Valladolid; España
Fil: Huerta Illera, I.. Universidad de Valladolid; España
Fil: Piqueras, Cristian Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina
Fil: Sanz Arranz, A.. Universidad de Valladolid; España
Fil: García Serna, J.. Universidad de Valladolid; España
Fil: Cocero, María José. Universidad de Valladolid; España
description H2O2 concentrations in aqueous solutions have been determined by means of a 532nm Raman spectrometer. H2O2 is a highly demanded green oxidant agent, and its direct synthesis from H2 and O2 is a promising alternative to the traditional production process. Raman spectroscopy is a fast, non-destructive and reliable analytical technique for H2O2 quantification, which avoids the drawbacks of traditional iodometric determinations (sample extraction, preparation of the reagents and a long time of analysis). A high pressure view cell has been designed to facilitate the measuring at high pressures, which are often found in a direct synthesis process. A thorough calibration model has been developed, and it has been validated at high pressure (5.0MPa) and temperature (up to 45°C). The solvent (water) was used as internal standard to correct multiplicative distortions. The validation of the analytical technique produced reproducible and accurate results compared against classic iodometric titration, allowing the use of a single calibration model for a range of reaction conditions. The feasible use of Raman spectroscopy for real-time quantitative reaction monitoring has been established by analysing the decomposition reaction of H2O2 under different conditions. © 2010 Elsevier B.V.
publishDate 2011
dc.date.none.fl_str_mv 2011-02
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/57731
Moreno, T.; Morán López, M. A.; Huerta Illera, I.; Piqueras, Cristian Martin; Sanz Arranz, A.; et al.; Quantitative Raman determination of hydrogen peroxide using the solvent as internal standard: Online application in the direct synthesis of hydrogen peroxide; Elsevier Science Sa; Chemical Engineering Journal; 166; 3; 2-2011; 1061-1065
1385-8947
CONICET Digital
CONICET
url http://hdl.handle.net/11336/57731
identifier_str_mv Moreno, T.; Morán López, M. A.; Huerta Illera, I.; Piqueras, Cristian Martin; Sanz Arranz, A.; et al.; Quantitative Raman determination of hydrogen peroxide using the solvent as internal standard: Online application in the direct synthesis of hydrogen peroxide; Elsevier Science Sa; Chemical Engineering Journal; 166; 3; 2-2011; 1061-1065
1385-8947
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.cej.2010.11.068
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S1385894710011642
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier Science Sa
publisher.none.fl_str_mv Elsevier Science Sa
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614254110441472
score 13.070432