Genesis of the La Espingarda kaolin deposit in Patagonia
- Autores
- Dominguez, Eduardo Alejandro; Iglesias, Iglesias; Dondi, Michele; Murray, Haydn
- Año de publicación
- 2010
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The La Espingarda kaolin deposit was formed by "in situ" alteration of sub-alkaline rhyolites belonging to the Jurassic Marifil Formation. Three altered volcanic lithofacies were identified: a porphyric biotitic ignimbrite (RPB), a coarse lithic ignimbrite (ILG), and a fluidal intrusive rhyolite (RFI). The kaolinization covers an ellipsoidal surface area of ∼ 20,000 m2, with the alteration intensity decreasing downwards and disappearing at 8-12 m from the surface. In two mine sectors small stockworks of fine quartz veins appears (< 3 m2). The deepest alteration is related to two fault zones where the three volcanic units are in contact. There is no lateral clay zoning at the faults. The mineralogical composition is kaolinite ± halloysite ± illite + quartz + feldspars + Fe-hydr(oxides). At least three kaolinite generations were identified. The first is pervasive; the second appears as a filling of vugs in the quartz veinlets that crosscut the pervasively altered rocks; and the third occurs as pure kaolin veins without quartz vein cross cuts. During the alteration processes almost total alkali cations were leached. The argillized lithofacies showed Ni enrichment and Cu, Sr, and Ba depletions. The main weathering genesis for La Espingarda is supported by the deposit morphology, its location in topographic lows, the paleoclimatic record, its simple mineralogical composition; vertical zonation, the kaolinite veins isotopes (δ18O ‰ 18.3; δD ‰ - 59.0), and the trace element distribution. A steam heated water activity produced some kaolinite overprint according to one isotopic value and the S and P contents slightly higher in the kaolinized rocks. Neither Au, Ag, As, Sb, Hg, or Ba epithermal pathfinders' anomalies nor drill data support the existence of any metallic mineralization at the kaolin blanket bottom. In Patagonia hydrothermal kaolinite manifestations are located around and beneath silicified, erosion-resistant hills and include some of the following minerals: dickite, alunite, pyrophyllite, or pyrite and have As, S, Ba, and Ag trace elements within the range of weak geochemical anomalies.
Fil: Dominguez, Eduardo Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto Geológico del Sur. Universidad Nacional del Sur. Departamento de Geología. Instituto Geológico del Sur; Argentina
Fil: Iglesias, Iglesias. Piedra Grande Sa; Argentina
Fil: Dondi, Michele. CNR-ISTEC. Istituto di Scienza e Tecnologia dei Materiali Ceramici; Italia
Fil: Murray, Haydn. Indiana University; Estados Unidos - Materia
-
Epithermal
Exploration
Genesis
Kaolin - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/73212
Ver los metadatos del registro completo
id |
CONICETDig_aca7e3afc4a9897f46575b2fcb191c6a |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/73212 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Genesis of the La Espingarda kaolin deposit in PatagoniaDominguez, Eduardo AlejandroIglesias, IglesiasDondi, MicheleMurray, HaydnEpithermalExplorationGenesisKaolinhttps://purl.org/becyt/ford/1.5https://purl.org/becyt/ford/1The La Espingarda kaolin deposit was formed by "in situ" alteration of sub-alkaline rhyolites belonging to the Jurassic Marifil Formation. Three altered volcanic lithofacies were identified: a porphyric biotitic ignimbrite (RPB), a coarse lithic ignimbrite (ILG), and a fluidal intrusive rhyolite (RFI). The kaolinization covers an ellipsoidal surface area of ∼ 20,000 m2, with the alteration intensity decreasing downwards and disappearing at 8-12 m from the surface. In two mine sectors small stockworks of fine quartz veins appears (< 3 m2). The deepest alteration is related to two fault zones where the three volcanic units are in contact. There is no lateral clay zoning at the faults. The mineralogical composition is kaolinite ± halloysite ± illite + quartz + feldspars + Fe-hydr(oxides). At least three kaolinite generations were identified. The first is pervasive; the second appears as a filling of vugs in the quartz veinlets that crosscut the pervasively altered rocks; and the third occurs as pure kaolin veins without quartz vein cross cuts. During the alteration processes almost total alkali cations were leached. The argillized lithofacies showed Ni enrichment and Cu, Sr, and Ba depletions. The main weathering genesis for La Espingarda is supported by the deposit morphology, its location in topographic lows, the paleoclimatic record, its simple mineralogical composition; vertical zonation, the kaolinite veins isotopes (δ18O ‰ 18.3; δD ‰ - 59.0), and the trace element distribution. A steam heated water activity produced some kaolinite overprint according to one isotopic value and the S and P contents slightly higher in the kaolinized rocks. Neither Au, Ag, As, Sb, Hg, or Ba epithermal pathfinders' anomalies nor drill data support the existence of any metallic mineralization at the kaolin blanket bottom. In Patagonia hydrothermal kaolinite manifestations are located around and beneath silicified, erosion-resistant hills and include some of the following minerals: dickite, alunite, pyrophyllite, or pyrite and have As, S, Ba, and Ag trace elements within the range of weak geochemical anomalies.Fil: Dominguez, Eduardo Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto Geológico del Sur. Universidad Nacional del Sur. Departamento de Geología. Instituto Geológico del Sur; ArgentinaFil: Iglesias, Iglesias. Piedra Grande Sa; ArgentinaFil: Dondi, Michele. CNR-ISTEC. Istituto di Scienza e Tecnologia dei Materiali Ceramici; ItaliaFil: Murray, Haydn. Indiana University; Estados UnidosElsevier Science2010-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/73212Dominguez, Eduardo Alejandro; Iglesias, Iglesias; Dondi, Michele; Murray, Haydn; Genesis of the La Espingarda kaolin deposit in Patagonia; Elsevier Science; Applied Clay Science; 47; 3-4; 2-2010; 290-3020169-1317CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0169131709003263info:eu-repo/semantics/altIdentifier/doi/10.1016/j.clay.2009.11.030info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:36:13Zoai:ri.conicet.gov.ar:11336/73212instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:36:14.037CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Genesis of the La Espingarda kaolin deposit in Patagonia |
title |
Genesis of the La Espingarda kaolin deposit in Patagonia |
spellingShingle |
Genesis of the La Espingarda kaolin deposit in Patagonia Dominguez, Eduardo Alejandro Epithermal Exploration Genesis Kaolin |
title_short |
Genesis of the La Espingarda kaolin deposit in Patagonia |
title_full |
Genesis of the La Espingarda kaolin deposit in Patagonia |
title_fullStr |
Genesis of the La Espingarda kaolin deposit in Patagonia |
title_full_unstemmed |
Genesis of the La Espingarda kaolin deposit in Patagonia |
title_sort |
Genesis of the La Espingarda kaolin deposit in Patagonia |
dc.creator.none.fl_str_mv |
Dominguez, Eduardo Alejandro Iglesias, Iglesias Dondi, Michele Murray, Haydn |
author |
Dominguez, Eduardo Alejandro |
author_facet |
Dominguez, Eduardo Alejandro Iglesias, Iglesias Dondi, Michele Murray, Haydn |
author_role |
author |
author2 |
Iglesias, Iglesias Dondi, Michele Murray, Haydn |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Epithermal Exploration Genesis Kaolin |
topic |
Epithermal Exploration Genesis Kaolin |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.5 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The La Espingarda kaolin deposit was formed by "in situ" alteration of sub-alkaline rhyolites belonging to the Jurassic Marifil Formation. Three altered volcanic lithofacies were identified: a porphyric biotitic ignimbrite (RPB), a coarse lithic ignimbrite (ILG), and a fluidal intrusive rhyolite (RFI). The kaolinization covers an ellipsoidal surface area of ∼ 20,000 m2, with the alteration intensity decreasing downwards and disappearing at 8-12 m from the surface. In two mine sectors small stockworks of fine quartz veins appears (< 3 m2). The deepest alteration is related to two fault zones where the three volcanic units are in contact. There is no lateral clay zoning at the faults. The mineralogical composition is kaolinite ± halloysite ± illite + quartz + feldspars + Fe-hydr(oxides). At least three kaolinite generations were identified. The first is pervasive; the second appears as a filling of vugs in the quartz veinlets that crosscut the pervasively altered rocks; and the third occurs as pure kaolin veins without quartz vein cross cuts. During the alteration processes almost total alkali cations were leached. The argillized lithofacies showed Ni enrichment and Cu, Sr, and Ba depletions. The main weathering genesis for La Espingarda is supported by the deposit morphology, its location in topographic lows, the paleoclimatic record, its simple mineralogical composition; vertical zonation, the kaolinite veins isotopes (δ18O ‰ 18.3; δD ‰ - 59.0), and the trace element distribution. A steam heated water activity produced some kaolinite overprint according to one isotopic value and the S and P contents slightly higher in the kaolinized rocks. Neither Au, Ag, As, Sb, Hg, or Ba epithermal pathfinders' anomalies nor drill data support the existence of any metallic mineralization at the kaolin blanket bottom. In Patagonia hydrothermal kaolinite manifestations are located around and beneath silicified, erosion-resistant hills and include some of the following minerals: dickite, alunite, pyrophyllite, or pyrite and have As, S, Ba, and Ag trace elements within the range of weak geochemical anomalies. Fil: Dominguez, Eduardo Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto Geológico del Sur. Universidad Nacional del Sur. Departamento de Geología. Instituto Geológico del Sur; Argentina Fil: Iglesias, Iglesias. Piedra Grande Sa; Argentina Fil: Dondi, Michele. CNR-ISTEC. Istituto di Scienza e Tecnologia dei Materiali Ceramici; Italia Fil: Murray, Haydn. Indiana University; Estados Unidos |
description |
The La Espingarda kaolin deposit was formed by "in situ" alteration of sub-alkaline rhyolites belonging to the Jurassic Marifil Formation. Three altered volcanic lithofacies were identified: a porphyric biotitic ignimbrite (RPB), a coarse lithic ignimbrite (ILG), and a fluidal intrusive rhyolite (RFI). The kaolinization covers an ellipsoidal surface area of ∼ 20,000 m2, with the alteration intensity decreasing downwards and disappearing at 8-12 m from the surface. In two mine sectors small stockworks of fine quartz veins appears (< 3 m2). The deepest alteration is related to two fault zones where the three volcanic units are in contact. There is no lateral clay zoning at the faults. The mineralogical composition is kaolinite ± halloysite ± illite + quartz + feldspars + Fe-hydr(oxides). At least three kaolinite generations were identified. The first is pervasive; the second appears as a filling of vugs in the quartz veinlets that crosscut the pervasively altered rocks; and the third occurs as pure kaolin veins without quartz vein cross cuts. During the alteration processes almost total alkali cations were leached. The argillized lithofacies showed Ni enrichment and Cu, Sr, and Ba depletions. The main weathering genesis for La Espingarda is supported by the deposit morphology, its location in topographic lows, the paleoclimatic record, its simple mineralogical composition; vertical zonation, the kaolinite veins isotopes (δ18O ‰ 18.3; δD ‰ - 59.0), and the trace element distribution. A steam heated water activity produced some kaolinite overprint according to one isotopic value and the S and P contents slightly higher in the kaolinized rocks. Neither Au, Ag, As, Sb, Hg, or Ba epithermal pathfinders' anomalies nor drill data support the existence of any metallic mineralization at the kaolin blanket bottom. In Patagonia hydrothermal kaolinite manifestations are located around and beneath silicified, erosion-resistant hills and include some of the following minerals: dickite, alunite, pyrophyllite, or pyrite and have As, S, Ba, and Ag trace elements within the range of weak geochemical anomalies. |
publishDate |
2010 |
dc.date.none.fl_str_mv |
2010-02 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/73212 Dominguez, Eduardo Alejandro; Iglesias, Iglesias; Dondi, Michele; Murray, Haydn; Genesis of the La Espingarda kaolin deposit in Patagonia; Elsevier Science; Applied Clay Science; 47; 3-4; 2-2010; 290-302 0169-1317 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/73212 |
identifier_str_mv |
Dominguez, Eduardo Alejandro; Iglesias, Iglesias; Dondi, Michele; Murray, Haydn; Genesis of the La Espingarda kaolin deposit in Patagonia; Elsevier Science; Applied Clay Science; 47; 3-4; 2-2010; 290-302 0169-1317 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0169131709003263 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.clay.2009.11.030 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science |
publisher.none.fl_str_mv |
Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846082827020402688 |
score |
13.22299 |