Patents on plant transcription factors
- Autores
- Arce, Agustín Lucas; Cabello, Julieta Virginia; Chan, Raquel Lia
- Año de publicación
- 2008
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Transcription factors are clue elements in the regulation of signal transduction pathways in living organisms. These proteins are able to recognize and bind specific sequences in the promoter regions of their targets and subsequently activate or repress entire metabolic or developmental processes. About 1500 TFs were informatically identified in plants, analysis mainly based in the presence of DNA-binding domains in the translated sequences. However, only a few of these 1500 were functionally characterized and clearly classified as TFs. Among these, several seem to be powerful biotechnological tools in order to improve agronomic crops via the obtaining of transgenic plants or as molecular markers. Such TFs have become the objects of patents presentations in the whole world. The assigned uses present a variety of purposes including the improvement in yield, abiotic and biotic stresses tolerances as well as a combination of them. Some examples are commented in the present overview. Most of these TFs confer to transgenic plants complex phenotypes due to a combination of different regulated pathways. In this sense, the use of inducible promoters instead of constitutive ones seems in some cases to be useful to limit the changed phenotype to the desired one, avoiding lateral effects. None of these TFs was converted up to now in a market product since time-consuming experiments and regulation permits are required to arrive to such point. Moreover, a considerable money investment must be done, not justified in all cases. However, it is likely that these molecules will become in the near future the first choice for breeders since it was demonstrated that TFs are very efficient conferring desired traits to transgenic plants. Additionally, for the public perception the over or ectopic expression of a plant gene should be more accepted than the use of molecules from other species.
Fil: Arce, Agustín Lucas. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Agrobiotecnología del Litoral. Universidad Nacional del Litoral. Instituto de Agrobiotecnología del Litoral; Argentina
Fil: Cabello, Julieta Virginia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Agrobiotecnología del Litoral. Universidad Nacional del Litoral. Instituto de Agrobiotecnología del Litoral; Argentina
Fil: Chan, Raquel Lia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Agrobiotecnología del Litoral. Universidad Nacional del Litoral. Instituto de Agrobiotecnología del Litoral; Argentina - Materia
-
COMPLEX PHENOTYPES
PLANT DOMESTICATION
PLANT IMPROVEMENT
PLANT TRANSCRIPTION FACTOR
STRESS TOLERANCE
TRANSGENIC PLANTS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/84795
Ver los metadatos del registro completo
| id |
CONICETDig_ac8479658fafa95ca72d380516aa9f62 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/84795 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Patents on plant transcription factorsArce, Agustín LucasCabello, Julieta VirginiaChan, Raquel LiaCOMPLEX PHENOTYPESPLANT DOMESTICATIONPLANT IMPROVEMENTPLANT TRANSCRIPTION FACTORSTRESS TOLERANCETRANSGENIC PLANTShttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1Transcription factors are clue elements in the regulation of signal transduction pathways in living organisms. These proteins are able to recognize and bind specific sequences in the promoter regions of their targets and subsequently activate or repress entire metabolic or developmental processes. About 1500 TFs were informatically identified in plants, analysis mainly based in the presence of DNA-binding domains in the translated sequences. However, only a few of these 1500 were functionally characterized and clearly classified as TFs. Among these, several seem to be powerful biotechnological tools in order to improve agronomic crops via the obtaining of transgenic plants or as molecular markers. Such TFs have become the objects of patents presentations in the whole world. The assigned uses present a variety of purposes including the improvement in yield, abiotic and biotic stresses tolerances as well as a combination of them. Some examples are commented in the present overview. Most of these TFs confer to transgenic plants complex phenotypes due to a combination of different regulated pathways. In this sense, the use of inducible promoters instead of constitutive ones seems in some cases to be useful to limit the changed phenotype to the desired one, avoiding lateral effects. None of these TFs was converted up to now in a market product since time-consuming experiments and regulation permits are required to arrive to such point. Moreover, a considerable money investment must be done, not justified in all cases. However, it is likely that these molecules will become in the near future the first choice for breeders since it was demonstrated that TFs are very efficient conferring desired traits to transgenic plants. Additionally, for the public perception the over or ectopic expression of a plant gene should be more accepted than the use of molecules from other species.Fil: Arce, Agustín Lucas. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Agrobiotecnología del Litoral. Universidad Nacional del Litoral. Instituto de Agrobiotecnología del Litoral; ArgentinaFil: Cabello, Julieta Virginia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Agrobiotecnología del Litoral. Universidad Nacional del Litoral. Instituto de Agrobiotecnología del Litoral; ArgentinaFil: Chan, Raquel Lia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Agrobiotecnología del Litoral. Universidad Nacional del Litoral. Instituto de Agrobiotecnología del Litoral; ArgentinaBentham Science Publishers B.V.2008-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/84795Arce, Agustín Lucas; Cabello, Julieta Virginia; Chan, Raquel Lia; Patents on plant transcription factors; Bentham Science Publishers B.V.; Recent Patents on Biotechnology; 2; 3; 12-2008; 209-2171872-2083CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.2174/187220808786241024info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-11-05T09:59:13Zoai:ri.conicet.gov.ar:11336/84795instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-11-05 09:59:14.099CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Patents on plant transcription factors |
| title |
Patents on plant transcription factors |
| spellingShingle |
Patents on plant transcription factors Arce, Agustín Lucas COMPLEX PHENOTYPES PLANT DOMESTICATION PLANT IMPROVEMENT PLANT TRANSCRIPTION FACTOR STRESS TOLERANCE TRANSGENIC PLANTS |
| title_short |
Patents on plant transcription factors |
| title_full |
Patents on plant transcription factors |
| title_fullStr |
Patents on plant transcription factors |
| title_full_unstemmed |
Patents on plant transcription factors |
| title_sort |
Patents on plant transcription factors |
| dc.creator.none.fl_str_mv |
Arce, Agustín Lucas Cabello, Julieta Virginia Chan, Raquel Lia |
| author |
Arce, Agustín Lucas |
| author_facet |
Arce, Agustín Lucas Cabello, Julieta Virginia Chan, Raquel Lia |
| author_role |
author |
| author2 |
Cabello, Julieta Virginia Chan, Raquel Lia |
| author2_role |
author author |
| dc.subject.none.fl_str_mv |
COMPLEX PHENOTYPES PLANT DOMESTICATION PLANT IMPROVEMENT PLANT TRANSCRIPTION FACTOR STRESS TOLERANCE TRANSGENIC PLANTS |
| topic |
COMPLEX PHENOTYPES PLANT DOMESTICATION PLANT IMPROVEMENT PLANT TRANSCRIPTION FACTOR STRESS TOLERANCE TRANSGENIC PLANTS |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.6 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
Transcription factors are clue elements in the regulation of signal transduction pathways in living organisms. These proteins are able to recognize and bind specific sequences in the promoter regions of their targets and subsequently activate or repress entire metabolic or developmental processes. About 1500 TFs were informatically identified in plants, analysis mainly based in the presence of DNA-binding domains in the translated sequences. However, only a few of these 1500 were functionally characterized and clearly classified as TFs. Among these, several seem to be powerful biotechnological tools in order to improve agronomic crops via the obtaining of transgenic plants or as molecular markers. Such TFs have become the objects of patents presentations in the whole world. The assigned uses present a variety of purposes including the improvement in yield, abiotic and biotic stresses tolerances as well as a combination of them. Some examples are commented in the present overview. Most of these TFs confer to transgenic plants complex phenotypes due to a combination of different regulated pathways. In this sense, the use of inducible promoters instead of constitutive ones seems in some cases to be useful to limit the changed phenotype to the desired one, avoiding lateral effects. None of these TFs was converted up to now in a market product since time-consuming experiments and regulation permits are required to arrive to such point. Moreover, a considerable money investment must be done, not justified in all cases. However, it is likely that these molecules will become in the near future the first choice for breeders since it was demonstrated that TFs are very efficient conferring desired traits to transgenic plants. Additionally, for the public perception the over or ectopic expression of a plant gene should be more accepted than the use of molecules from other species. Fil: Arce, Agustín Lucas. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Agrobiotecnología del Litoral. Universidad Nacional del Litoral. Instituto de Agrobiotecnología del Litoral; Argentina Fil: Cabello, Julieta Virginia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Agrobiotecnología del Litoral. Universidad Nacional del Litoral. Instituto de Agrobiotecnología del Litoral; Argentina Fil: Chan, Raquel Lia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Agrobiotecnología del Litoral. Universidad Nacional del Litoral. Instituto de Agrobiotecnología del Litoral; Argentina |
| description |
Transcription factors are clue elements in the regulation of signal transduction pathways in living organisms. These proteins are able to recognize and bind specific sequences in the promoter regions of their targets and subsequently activate or repress entire metabolic or developmental processes. About 1500 TFs were informatically identified in plants, analysis mainly based in the presence of DNA-binding domains in the translated sequences. However, only a few of these 1500 were functionally characterized and clearly classified as TFs. Among these, several seem to be powerful biotechnological tools in order to improve agronomic crops via the obtaining of transgenic plants or as molecular markers. Such TFs have become the objects of patents presentations in the whole world. The assigned uses present a variety of purposes including the improvement in yield, abiotic and biotic stresses tolerances as well as a combination of them. Some examples are commented in the present overview. Most of these TFs confer to transgenic plants complex phenotypes due to a combination of different regulated pathways. In this sense, the use of inducible promoters instead of constitutive ones seems in some cases to be useful to limit the changed phenotype to the desired one, avoiding lateral effects. None of these TFs was converted up to now in a market product since time-consuming experiments and regulation permits are required to arrive to such point. Moreover, a considerable money investment must be done, not justified in all cases. However, it is likely that these molecules will become in the near future the first choice for breeders since it was demonstrated that TFs are very efficient conferring desired traits to transgenic plants. Additionally, for the public perception the over or ectopic expression of a plant gene should be more accepted than the use of molecules from other species. |
| publishDate |
2008 |
| dc.date.none.fl_str_mv |
2008-12 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/84795 Arce, Agustín Lucas; Cabello, Julieta Virginia; Chan, Raquel Lia; Patents on plant transcription factors; Bentham Science Publishers B.V.; Recent Patents on Biotechnology; 2; 3; 12-2008; 209-217 1872-2083 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/84795 |
| identifier_str_mv |
Arce, Agustín Lucas; Cabello, Julieta Virginia; Chan, Raquel Lia; Patents on plant transcription factors; Bentham Science Publishers B.V.; Recent Patents on Biotechnology; 2; 3; 12-2008; 209-217 1872-2083 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.2174/187220808786241024 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Bentham Science Publishers B.V. |
| publisher.none.fl_str_mv |
Bentham Science Publishers B.V. |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1847977411543564288 |
| score |
13.087074 |