Beyond MHC binding: immunogenicity prediction tools to refine neoantigen selection in cancer patients
- Autores
- Carri, Ibel; Schwab, Erika; Podaza, Enrique Arturo; García Álvarez, Heli Magalí; Mordoh, José; Nielsen, Morten; Barrios, María Marcela
- Año de publicación
- 2023
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In the last years, multiple efforts have been made to accurately predict neoantigens derived from somatic mutations in cancer patients, either to develop personalized therapeutic vaccines or to study immune responses after cancer immunotherapy. In this context, the increasing accessibility of paired whole-exome sequencing (WES) of tumor biopsies and matched normal tissue as well as RNA sequencing (RNA-Seq) has provided a basis for the development of bioinformatics tools that predict and prioritize neoantigen candidates. Most pipelines rely on the binding prediction of candidate peptides to the patient’s major histocompatibility complex (MHC), but these methods return a high number of false positives since they lack information related to other features that influence T cell responses to neoantigens. This review explores available computational methods that incorporate information on T cell preferences to predict their activation after encountering a peptide-MHC complex. Specifically, methods that predict i) biological features that may increase the availability of a neopeptide to be exposed to the immune system, ii) metrics of self-similarity representing the chances of a neoantigen to break immune tolerance, iii) pathogen immunogenicity, and iv) tumor immunogenicity. Also, this review describes the characteristics of these tools and addresses their performance in the context of a novel benchmark dataset of experimentally validated neoantigens from patients treated with a melanoma vaccine (VACCIMEL) in a phase II clinical study. The overall results of the evaluation indicate that current tools have a limited ability to predict the activation of a cytotoxic response against neoantigens. Based on this result, the limitations that make this problem an unsolved challenge in immunoinformatics are discussed.
Fil: Carri, Ibel. Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Biotecnológicas; Argentina
Fil: Schwab, Erika. Fundación Cancer; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Podaza, Enrique Arturo. Englander Institute For Precision Medicine; Estados Unidos. Fundación Cancer; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: García Álvarez, Heli Magalí. Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Biotecnológicas; Argentina
Fil: Mordoh, José. Fundación Cancer; Argentina
Fil: Nielsen, Morten. Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Biotecnológicas; Argentina
Fil: Barrios, María Marcela. Fundación Cancer; Argentina - Materia
-
Neoantigen
cancer vaccine
melanoma
machine learning
neoepitope prediction - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/229616
Ver los metadatos del registro completo
id |
CONICETDig_ac6b9b06e8e836c79d0e8c2781682a45 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/229616 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Beyond MHC binding: immunogenicity prediction tools to refine neoantigen selection in cancer patientsCarri, IbelSchwab, ErikaPodaza, Enrique ArturoGarcía Álvarez, Heli MagalíMordoh, JoséNielsen, MortenBarrios, María MarcelaNeoantigencancer vaccinemelanomamachine learningneoepitope predictionhttps://purl.org/becyt/ford/3.1https://purl.org/becyt/ford/3In the last years, multiple efforts have been made to accurately predict neoantigens derived from somatic mutations in cancer patients, either to develop personalized therapeutic vaccines or to study immune responses after cancer immunotherapy. In this context, the increasing accessibility of paired whole-exome sequencing (WES) of tumor biopsies and matched normal tissue as well as RNA sequencing (RNA-Seq) has provided a basis for the development of bioinformatics tools that predict and prioritize neoantigen candidates. Most pipelines rely on the binding prediction of candidate peptides to the patient’s major histocompatibility complex (MHC), but these methods return a high number of false positives since they lack information related to other features that influence T cell responses to neoantigens. This review explores available computational methods that incorporate information on T cell preferences to predict their activation after encountering a peptide-MHC complex. Specifically, methods that predict i) biological features that may increase the availability of a neopeptide to be exposed to the immune system, ii) metrics of self-similarity representing the chances of a neoantigen to break immune tolerance, iii) pathogen immunogenicity, and iv) tumor immunogenicity. Also, this review describes the characteristics of these tools and addresses their performance in the context of a novel benchmark dataset of experimentally validated neoantigens from patients treated with a melanoma vaccine (VACCIMEL) in a phase II clinical study. The overall results of the evaluation indicate that current tools have a limited ability to predict the activation of a cytotoxic response against neoantigens. Based on this result, the limitations that make this problem an unsolved challenge in immunoinformatics are discussed.Fil: Carri, Ibel. Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Biotecnológicas; ArgentinaFil: Schwab, Erika. Fundación Cancer; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Podaza, Enrique Arturo. Englander Institute For Precision Medicine; Estados Unidos. Fundación Cancer; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: García Álvarez, Heli Magalí. Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Biotecnológicas; ArgentinaFil: Mordoh, José. Fundación Cancer; ArgentinaFil: Nielsen, Morten. Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Biotecnológicas; ArgentinaFil: Barrios, María Marcela. Fundación Cancer; ArgentinaOpen Exploration Publishing Inc2023-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/229616Carri, Ibel; Schwab, Erika; Podaza, Enrique Arturo; García Álvarez, Heli Magalí; Mordoh, José; et al.; Beyond MHC binding: immunogenicity prediction tools to refine neoantigen selection in cancer patients; Open Exploration Publishing Inc; Exploration of Immunology; 3; 2; 4-2023; 82-1032768-6655CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.explorationpub.com/Journals/ei/Article/100391info:eu-repo/semantics/altIdentifier/doi/10.37349/ei.2023.00091info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:26:44Zoai:ri.conicet.gov.ar:11336/229616instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:26:44.5CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Beyond MHC binding: immunogenicity prediction tools to refine neoantigen selection in cancer patients |
title |
Beyond MHC binding: immunogenicity prediction tools to refine neoantigen selection in cancer patients |
spellingShingle |
Beyond MHC binding: immunogenicity prediction tools to refine neoantigen selection in cancer patients Carri, Ibel Neoantigen cancer vaccine melanoma machine learning neoepitope prediction |
title_short |
Beyond MHC binding: immunogenicity prediction tools to refine neoantigen selection in cancer patients |
title_full |
Beyond MHC binding: immunogenicity prediction tools to refine neoantigen selection in cancer patients |
title_fullStr |
Beyond MHC binding: immunogenicity prediction tools to refine neoantigen selection in cancer patients |
title_full_unstemmed |
Beyond MHC binding: immunogenicity prediction tools to refine neoantigen selection in cancer patients |
title_sort |
Beyond MHC binding: immunogenicity prediction tools to refine neoantigen selection in cancer patients |
dc.creator.none.fl_str_mv |
Carri, Ibel Schwab, Erika Podaza, Enrique Arturo García Álvarez, Heli Magalí Mordoh, José Nielsen, Morten Barrios, María Marcela |
author |
Carri, Ibel |
author_facet |
Carri, Ibel Schwab, Erika Podaza, Enrique Arturo García Álvarez, Heli Magalí Mordoh, José Nielsen, Morten Barrios, María Marcela |
author_role |
author |
author2 |
Schwab, Erika Podaza, Enrique Arturo García Álvarez, Heli Magalí Mordoh, José Nielsen, Morten Barrios, María Marcela |
author2_role |
author author author author author author |
dc.subject.none.fl_str_mv |
Neoantigen cancer vaccine melanoma machine learning neoepitope prediction |
topic |
Neoantigen cancer vaccine melanoma machine learning neoepitope prediction |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/3.1 https://purl.org/becyt/ford/3 |
dc.description.none.fl_txt_mv |
In the last years, multiple efforts have been made to accurately predict neoantigens derived from somatic mutations in cancer patients, either to develop personalized therapeutic vaccines or to study immune responses after cancer immunotherapy. In this context, the increasing accessibility of paired whole-exome sequencing (WES) of tumor biopsies and matched normal tissue as well as RNA sequencing (RNA-Seq) has provided a basis for the development of bioinformatics tools that predict and prioritize neoantigen candidates. Most pipelines rely on the binding prediction of candidate peptides to the patient’s major histocompatibility complex (MHC), but these methods return a high number of false positives since they lack information related to other features that influence T cell responses to neoantigens. This review explores available computational methods that incorporate information on T cell preferences to predict their activation after encountering a peptide-MHC complex. Specifically, methods that predict i) biological features that may increase the availability of a neopeptide to be exposed to the immune system, ii) metrics of self-similarity representing the chances of a neoantigen to break immune tolerance, iii) pathogen immunogenicity, and iv) tumor immunogenicity. Also, this review describes the characteristics of these tools and addresses their performance in the context of a novel benchmark dataset of experimentally validated neoantigens from patients treated with a melanoma vaccine (VACCIMEL) in a phase II clinical study. The overall results of the evaluation indicate that current tools have a limited ability to predict the activation of a cytotoxic response against neoantigens. Based on this result, the limitations that make this problem an unsolved challenge in immunoinformatics are discussed. Fil: Carri, Ibel. Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Biotecnológicas; Argentina Fil: Schwab, Erika. Fundación Cancer; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Podaza, Enrique Arturo. Englander Institute For Precision Medicine; Estados Unidos. Fundación Cancer; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: García Álvarez, Heli Magalí. Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Biotecnológicas; Argentina Fil: Mordoh, José. Fundación Cancer; Argentina Fil: Nielsen, Morten. Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Biotecnológicas; Argentina Fil: Barrios, María Marcela. Fundación Cancer; Argentina |
description |
In the last years, multiple efforts have been made to accurately predict neoantigens derived from somatic mutations in cancer patients, either to develop personalized therapeutic vaccines or to study immune responses after cancer immunotherapy. In this context, the increasing accessibility of paired whole-exome sequencing (WES) of tumor biopsies and matched normal tissue as well as RNA sequencing (RNA-Seq) has provided a basis for the development of bioinformatics tools that predict and prioritize neoantigen candidates. Most pipelines rely on the binding prediction of candidate peptides to the patient’s major histocompatibility complex (MHC), but these methods return a high number of false positives since they lack information related to other features that influence T cell responses to neoantigens. This review explores available computational methods that incorporate information on T cell preferences to predict their activation after encountering a peptide-MHC complex. Specifically, methods that predict i) biological features that may increase the availability of a neopeptide to be exposed to the immune system, ii) metrics of self-similarity representing the chances of a neoantigen to break immune tolerance, iii) pathogen immunogenicity, and iv) tumor immunogenicity. Also, this review describes the characteristics of these tools and addresses their performance in the context of a novel benchmark dataset of experimentally validated neoantigens from patients treated with a melanoma vaccine (VACCIMEL) in a phase II clinical study. The overall results of the evaluation indicate that current tools have a limited ability to predict the activation of a cytotoxic response against neoantigens. Based on this result, the limitations that make this problem an unsolved challenge in immunoinformatics are discussed. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-04 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/229616 Carri, Ibel; Schwab, Erika; Podaza, Enrique Arturo; García Álvarez, Heli Magalí; Mordoh, José; et al.; Beyond MHC binding: immunogenicity prediction tools to refine neoantigen selection in cancer patients; Open Exploration Publishing Inc; Exploration of Immunology; 3; 2; 4-2023; 82-103 2768-6655 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/229616 |
identifier_str_mv |
Carri, Ibel; Schwab, Erika; Podaza, Enrique Arturo; García Álvarez, Heli Magalí; Mordoh, José; et al.; Beyond MHC binding: immunogenicity prediction tools to refine neoantigen selection in cancer patients; Open Exploration Publishing Inc; Exploration of Immunology; 3; 2; 4-2023; 82-103 2768-6655 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.explorationpub.com/Journals/ei/Article/100391 info:eu-repo/semantics/altIdentifier/doi/10.37349/ei.2023.00091 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Open Exploration Publishing Inc |
publisher.none.fl_str_mv |
Open Exploration Publishing Inc |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846082715560968192 |
score |
13.22299 |