Shorted operators and minus order

Autores
Contino, Maximiliano; Giribet, Juan Ignacio; Maestripieri, Alejandra Laura
Año de publicación
2019
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Let H be a Hilbert space, L(H) the algebra of bounded linear operators on H and W ∈ L(H) a positive operator. Given a closed subspace S of H, we characterize the shorted operator W/S of W to S as the maximum and as the infimum of certain sets, for the minus order − ≤. Also, given A ∈ L(H) with closed range, we study the following operator approximation problem considering the minus order: min− ≤ {(AX − I) ∗W(AX − I) : X ∈ L(H), subject to N(A ∗W) ⊆ N(X)}. We show that, under certain conditions, the shorted operator of W/R(A) is the minimum of this problem and we characterize the set of solutions.
Fil: Contino, Maximiliano. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina
Fil: Giribet, Juan Ignacio. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina
Fil: Maestripieri, Alejandra Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Matemáticas; Argentina
Materia
06A06
47A05
47A58
47A64
MINUS ORDER
OBLIQUE PROJECTIONS
SHORTED OPERATORS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/87430

id CONICETDig_abf42a80dbca92d0c01fff6a554404e3
oai_identifier_str oai:ri.conicet.gov.ar:11336/87430
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Shorted operators and minus orderContino, MaximilianoGiribet, Juan IgnacioMaestripieri, Alejandra Laura06A0647A0547A5847A64MINUS ORDEROBLIQUE PROJECTIONSSHORTED OPERATORShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Let H be a Hilbert space, L(H) the algebra of bounded linear operators on H and W ∈ L(H) a positive operator. Given a closed subspace S of H, we characterize the shorted operator W/S of W to S as the maximum and as the infimum of certain sets, for the minus order − ≤. Also, given A ∈ L(H) with closed range, we study the following operator approximation problem considering the minus order: min− ≤ {(AX − I) ∗W(AX − I) : X ∈ L(H), subject to N(A ∗W) ⊆ N(X)}. We show that, under certain conditions, the shorted operator of W/R(A) is the minimum of this problem and we characterize the set of solutions.Fil: Contino, Maximiliano. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; ArgentinaFil: Giribet, Juan Ignacio. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; ArgentinaFil: Maestripieri, Alejandra Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Matemáticas; ArgentinaTaylor & Francis Ltd2019-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/87430Contino, Maximiliano; Giribet, Juan Ignacio; Maestripieri, Alejandra Laura; Shorted operators and minus order; Taylor & Francis Ltd; Linear And Multilinear Algebra; 67; 11; 11-2019; 2173-21900308-1087CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.tandfonline.com/doi/full/10.1080/03081087.2018.1484872info:eu-repo/semantics/altIdentifier/doi/10.1080/03081087.2018.1484872info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1802.01973info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:44:54Zoai:ri.conicet.gov.ar:11336/87430instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:44:55.069CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Shorted operators and minus order
title Shorted operators and minus order
spellingShingle Shorted operators and minus order
Contino, Maximiliano
06A06
47A05
47A58
47A64
MINUS ORDER
OBLIQUE PROJECTIONS
SHORTED OPERATORS
title_short Shorted operators and minus order
title_full Shorted operators and minus order
title_fullStr Shorted operators and minus order
title_full_unstemmed Shorted operators and minus order
title_sort Shorted operators and minus order
dc.creator.none.fl_str_mv Contino, Maximiliano
Giribet, Juan Ignacio
Maestripieri, Alejandra Laura
author Contino, Maximiliano
author_facet Contino, Maximiliano
Giribet, Juan Ignacio
Maestripieri, Alejandra Laura
author_role author
author2 Giribet, Juan Ignacio
Maestripieri, Alejandra Laura
author2_role author
author
dc.subject.none.fl_str_mv 06A06
47A05
47A58
47A64
MINUS ORDER
OBLIQUE PROJECTIONS
SHORTED OPERATORS
topic 06A06
47A05
47A58
47A64
MINUS ORDER
OBLIQUE PROJECTIONS
SHORTED OPERATORS
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Let H be a Hilbert space, L(H) the algebra of bounded linear operators on H and W ∈ L(H) a positive operator. Given a closed subspace S of H, we characterize the shorted operator W/S of W to S as the maximum and as the infimum of certain sets, for the minus order − ≤. Also, given A ∈ L(H) with closed range, we study the following operator approximation problem considering the minus order: min− ≤ {(AX − I) ∗W(AX − I) : X ∈ L(H), subject to N(A ∗W) ⊆ N(X)}. We show that, under certain conditions, the shorted operator of W/R(A) is the minimum of this problem and we characterize the set of solutions.
Fil: Contino, Maximiliano. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina
Fil: Giribet, Juan Ignacio. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina
Fil: Maestripieri, Alejandra Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Matemáticas; Argentina
description Let H be a Hilbert space, L(H) the algebra of bounded linear operators on H and W ∈ L(H) a positive operator. Given a closed subspace S of H, we characterize the shorted operator W/S of W to S as the maximum and as the infimum of certain sets, for the minus order − ≤. Also, given A ∈ L(H) with closed range, we study the following operator approximation problem considering the minus order: min− ≤ {(AX − I) ∗W(AX − I) : X ∈ L(H), subject to N(A ∗W) ⊆ N(X)}. We show that, under certain conditions, the shorted operator of W/R(A) is the minimum of this problem and we characterize the set of solutions.
publishDate 2019
dc.date.none.fl_str_mv 2019-11
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/87430
Contino, Maximiliano; Giribet, Juan Ignacio; Maestripieri, Alejandra Laura; Shorted operators and minus order; Taylor & Francis Ltd; Linear And Multilinear Algebra; 67; 11; 11-2019; 2173-2190
0308-1087
CONICET Digital
CONICET
url http://hdl.handle.net/11336/87430
identifier_str_mv Contino, Maximiliano; Giribet, Juan Ignacio; Maestripieri, Alejandra Laura; Shorted operators and minus order; Taylor & Francis Ltd; Linear And Multilinear Algebra; 67; 11; 11-2019; 2173-2190
0308-1087
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.tandfonline.com/doi/full/10.1080/03081087.2018.1484872
info:eu-repo/semantics/altIdentifier/doi/10.1080/03081087.2018.1484872
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1802.01973
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Taylor & Francis Ltd
publisher.none.fl_str_mv Taylor & Francis Ltd
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614487414407168
score 13.070432