Shorted operators and minus order
- Autores
- Contino, Maximiliano; Giribet, Juan Ignacio; Maestripieri, Alejandra Laura
- Año de publicación
- 2019
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Let H be a Hilbert space, L(H) the algebra of bounded linear operators on H and W ∈ L(H) a positive operator. Given a closed subspace S of H, we characterize the shorted operator W/S of W to S as the maximum and as the infimum of certain sets, for the minus order − ≤. Also, given A ∈ L(H) with closed range, we study the following operator approximation problem considering the minus order: min− ≤ {(AX − I) ∗W(AX − I) : X ∈ L(H), subject to N(A ∗W) ⊆ N(X)}. We show that, under certain conditions, the shorted operator of W/R(A) is the minimum of this problem and we characterize the set of solutions.
Fil: Contino, Maximiliano. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina
Fil: Giribet, Juan Ignacio. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina
Fil: Maestripieri, Alejandra Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Matemáticas; Argentina - Materia
-
06A06
47A05
47A58
47A64
MINUS ORDER
OBLIQUE PROJECTIONS
SHORTED OPERATORS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/87430
Ver los metadatos del registro completo
id |
CONICETDig_abf42a80dbca92d0c01fff6a554404e3 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/87430 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Shorted operators and minus orderContino, MaximilianoGiribet, Juan IgnacioMaestripieri, Alejandra Laura06A0647A0547A5847A64MINUS ORDEROBLIQUE PROJECTIONSSHORTED OPERATORShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Let H be a Hilbert space, L(H) the algebra of bounded linear operators on H and W ∈ L(H) a positive operator. Given a closed subspace S of H, we characterize the shorted operator W/S of W to S as the maximum and as the infimum of certain sets, for the minus order − ≤. Also, given A ∈ L(H) with closed range, we study the following operator approximation problem considering the minus order: min− ≤ {(AX − I) ∗W(AX − I) : X ∈ L(H), subject to N(A ∗W) ⊆ N(X)}. We show that, under certain conditions, the shorted operator of W/R(A) is the minimum of this problem and we characterize the set of solutions.Fil: Contino, Maximiliano. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; ArgentinaFil: Giribet, Juan Ignacio. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; ArgentinaFil: Maestripieri, Alejandra Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Matemáticas; ArgentinaTaylor & Francis Ltd2019-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/87430Contino, Maximiliano; Giribet, Juan Ignacio; Maestripieri, Alejandra Laura; Shorted operators and minus order; Taylor & Francis Ltd; Linear And Multilinear Algebra; 67; 11; 11-2019; 2173-21900308-1087CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.tandfonline.com/doi/full/10.1080/03081087.2018.1484872info:eu-repo/semantics/altIdentifier/doi/10.1080/03081087.2018.1484872info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1802.01973info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:44:54Zoai:ri.conicet.gov.ar:11336/87430instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:44:55.069CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Shorted operators and minus order |
title |
Shorted operators and minus order |
spellingShingle |
Shorted operators and minus order Contino, Maximiliano 06A06 47A05 47A58 47A64 MINUS ORDER OBLIQUE PROJECTIONS SHORTED OPERATORS |
title_short |
Shorted operators and minus order |
title_full |
Shorted operators and minus order |
title_fullStr |
Shorted operators and minus order |
title_full_unstemmed |
Shorted operators and minus order |
title_sort |
Shorted operators and minus order |
dc.creator.none.fl_str_mv |
Contino, Maximiliano Giribet, Juan Ignacio Maestripieri, Alejandra Laura |
author |
Contino, Maximiliano |
author_facet |
Contino, Maximiliano Giribet, Juan Ignacio Maestripieri, Alejandra Laura |
author_role |
author |
author2 |
Giribet, Juan Ignacio Maestripieri, Alejandra Laura |
author2_role |
author author |
dc.subject.none.fl_str_mv |
06A06 47A05 47A58 47A64 MINUS ORDER OBLIQUE PROJECTIONS SHORTED OPERATORS |
topic |
06A06 47A05 47A58 47A64 MINUS ORDER OBLIQUE PROJECTIONS SHORTED OPERATORS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Let H be a Hilbert space, L(H) the algebra of bounded linear operators on H and W ∈ L(H) a positive operator. Given a closed subspace S of H, we characterize the shorted operator W/S of W to S as the maximum and as the infimum of certain sets, for the minus order − ≤. Also, given A ∈ L(H) with closed range, we study the following operator approximation problem considering the minus order: min− ≤ {(AX − I) ∗W(AX − I) : X ∈ L(H), subject to N(A ∗W) ⊆ N(X)}. We show that, under certain conditions, the shorted operator of W/R(A) is the minimum of this problem and we characterize the set of solutions. Fil: Contino, Maximiliano. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina Fil: Giribet, Juan Ignacio. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina Fil: Maestripieri, Alejandra Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Matemáticas; Argentina |
description |
Let H be a Hilbert space, L(H) the algebra of bounded linear operators on H and W ∈ L(H) a positive operator. Given a closed subspace S of H, we characterize the shorted operator W/S of W to S as the maximum and as the infimum of certain sets, for the minus order − ≤. Also, given A ∈ L(H) with closed range, we study the following operator approximation problem considering the minus order: min− ≤ {(AX − I) ∗W(AX − I) : X ∈ L(H), subject to N(A ∗W) ⊆ N(X)}. We show that, under certain conditions, the shorted operator of W/R(A) is the minimum of this problem and we characterize the set of solutions. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-11 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/87430 Contino, Maximiliano; Giribet, Juan Ignacio; Maestripieri, Alejandra Laura; Shorted operators and minus order; Taylor & Francis Ltd; Linear And Multilinear Algebra; 67; 11; 11-2019; 2173-2190 0308-1087 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/87430 |
identifier_str_mv |
Contino, Maximiliano; Giribet, Juan Ignacio; Maestripieri, Alejandra Laura; Shorted operators and minus order; Taylor & Francis Ltd; Linear And Multilinear Algebra; 67; 11; 11-2019; 2173-2190 0308-1087 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.tandfonline.com/doi/full/10.1080/03081087.2018.1484872 info:eu-repo/semantics/altIdentifier/doi/10.1080/03081087.2018.1484872 info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1802.01973 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Taylor & Francis Ltd |
publisher.none.fl_str_mv |
Taylor & Francis Ltd |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614487414407168 |
score |
13.070432 |