Relative humidity predicts day-to-day variations in COVID-19 cases in the city of Buenos Aires
- Autores
- Pineda Rojas, Andrea Laura; Cordo, Sandra Myriam; Saurral, Ramiro Ignacio; Jimenez, Jose L.; Marr, Linsey C.; Kropff, Emilio
- Año de publicación
- 2021
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Possible links between the transmission of COVID-19 and meteorology have been investigated by comparing positive cases across geographical regions or seasons. Little is known, however, about the degree to which environmental conditions modulate the daily dynamics of COVID-19 spread at a given location. One reason for this is that individual waves of the disease typically rise and decay too sharply, making it hard to isolate the contribution of meteorological cycles. To overcome this shortage, we here present a case study of the first wave of the outbreak in the city of Buenos Aires, which had a slow evolution of the caseload extending along most of 2020. We found that humidity plays a prominent role in modulating the variation of COVID-19 positive cases through a negative-slope linear relationship, with an optimal lag of 9 days between the meteorological observation and the positive case report. This relationship is specific to winter months, when relative humidity predicts up to half of the variance in positive case count. Our results provide a tool to anticipate possible local surges in COVID-19 cases after events of low humidity. More generally, they add to accumulating evidence pointing to dry air as a facilitator of COVID-19 transmission.
Fil: Pineda Rojas, Andrea Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Centro de Investigaciones del Mar y la Atmósfera. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Investigaciones del Mar y la Atmósfera; Argentina
Fil: Cordo, Sandra Myriam. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; Argentina
Fil: Saurral, Ramiro Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Centro de Investigaciones del Mar y la Atmósfera. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Investigaciones del Mar y la Atmósfera; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ciencias de la Atmósfera y los Océanos; Argentina
Fil: Jimenez, Jose L.. State University of Colorado at Boulder; Estados Unidos
Fil: Marr, Linsey C.. Virginia Tech University; Estados Unidos
Fil: Kropff, Emilio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; Argentina - Materia
-
METEOROLOGY
RELATIVE HUMIDITY
AIRBORN TRANSMISSION
COVID-19 - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/138480
Ver los metadatos del registro completo
id |
CONICETDig_abbbc6f07ff46c88af0dcef4d9470061 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/138480 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Relative humidity predicts day-to-day variations in COVID-19 cases in the city of Buenos AiresPineda Rojas, Andrea LauraCordo, Sandra MyriamSaurral, Ramiro IgnacioJimenez, Jose L.Marr, Linsey C.Kropff, EmilioMETEOROLOGYRELATIVE HUMIDITYAIRBORN TRANSMISSIONCOVID-19https://purl.org/becyt/ford/3.5https://purl.org/becyt/ford/3Possible links between the transmission of COVID-19 and meteorology have been investigated by comparing positive cases across geographical regions or seasons. Little is known, however, about the degree to which environmental conditions modulate the daily dynamics of COVID-19 spread at a given location. One reason for this is that individual waves of the disease typically rise and decay too sharply, making it hard to isolate the contribution of meteorological cycles. To overcome this shortage, we here present a case study of the first wave of the outbreak in the city of Buenos Aires, which had a slow evolution of the caseload extending along most of 2020. We found that humidity plays a prominent role in modulating the variation of COVID-19 positive cases through a negative-slope linear relationship, with an optimal lag of 9 days between the meteorological observation and the positive case report. This relationship is specific to winter months, when relative humidity predicts up to half of the variance in positive case count. Our results provide a tool to anticipate possible local surges in COVID-19 cases after events of low humidity. More generally, they add to accumulating evidence pointing to dry air as a facilitator of COVID-19 transmission.Fil: Pineda Rojas, Andrea Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Centro de Investigaciones del Mar y la Atmósfera. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Investigaciones del Mar y la Atmósfera; ArgentinaFil: Cordo, Sandra Myriam. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Saurral, Ramiro Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Centro de Investigaciones del Mar y la Atmósfera. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Investigaciones del Mar y la Atmósfera; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ciencias de la Atmósfera y los Océanos; ArgentinaFil: Jimenez, Jose L.. State University of Colorado at Boulder; Estados UnidosFil: Marr, Linsey C.. Virginia Tech University; Estados UnidosFil: Kropff, Emilio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; ArgentinaAmerican Chemical Society2021-07-30info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/138480Pineda Rojas, Andrea Laura; Cordo, Sandra Myriam; Saurral, Ramiro Ignacio; Jimenez, Jose L.; Marr, Linsey C.; et al.; Relative humidity predicts day-to-day variations in COVID-19 cases in the city of Buenos Aires; American Chemical Society; Environmental Science & Technology; 55; 16; 30-7-2021; 11176–111820013-936XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/10.1021/acs.est.1c02711info:eu-repo/semantics/altIdentifier/doi/10.1021/acs.est.1c02711info:eu-repo/semantics/altIdentifier/url/https://www.medrxiv.org/content/10.1101/2021.01.29.21250789v2.full.pdf+htmlinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:59:56Zoai:ri.conicet.gov.ar:11336/138480instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:59:57.04CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Relative humidity predicts day-to-day variations in COVID-19 cases in the city of Buenos Aires |
title |
Relative humidity predicts day-to-day variations in COVID-19 cases in the city of Buenos Aires |
spellingShingle |
Relative humidity predicts day-to-day variations in COVID-19 cases in the city of Buenos Aires Pineda Rojas, Andrea Laura METEOROLOGY RELATIVE HUMIDITY AIRBORN TRANSMISSION COVID-19 |
title_short |
Relative humidity predicts day-to-day variations in COVID-19 cases in the city of Buenos Aires |
title_full |
Relative humidity predicts day-to-day variations in COVID-19 cases in the city of Buenos Aires |
title_fullStr |
Relative humidity predicts day-to-day variations in COVID-19 cases in the city of Buenos Aires |
title_full_unstemmed |
Relative humidity predicts day-to-day variations in COVID-19 cases in the city of Buenos Aires |
title_sort |
Relative humidity predicts day-to-day variations in COVID-19 cases in the city of Buenos Aires |
dc.creator.none.fl_str_mv |
Pineda Rojas, Andrea Laura Cordo, Sandra Myriam Saurral, Ramiro Ignacio Jimenez, Jose L. Marr, Linsey C. Kropff, Emilio |
author |
Pineda Rojas, Andrea Laura |
author_facet |
Pineda Rojas, Andrea Laura Cordo, Sandra Myriam Saurral, Ramiro Ignacio Jimenez, Jose L. Marr, Linsey C. Kropff, Emilio |
author_role |
author |
author2 |
Cordo, Sandra Myriam Saurral, Ramiro Ignacio Jimenez, Jose L. Marr, Linsey C. Kropff, Emilio |
author2_role |
author author author author author |
dc.subject.none.fl_str_mv |
METEOROLOGY RELATIVE HUMIDITY AIRBORN TRANSMISSION COVID-19 |
topic |
METEOROLOGY RELATIVE HUMIDITY AIRBORN TRANSMISSION COVID-19 |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/3.5 https://purl.org/becyt/ford/3 |
dc.description.none.fl_txt_mv |
Possible links between the transmission of COVID-19 and meteorology have been investigated by comparing positive cases across geographical regions or seasons. Little is known, however, about the degree to which environmental conditions modulate the daily dynamics of COVID-19 spread at a given location. One reason for this is that individual waves of the disease typically rise and decay too sharply, making it hard to isolate the contribution of meteorological cycles. To overcome this shortage, we here present a case study of the first wave of the outbreak in the city of Buenos Aires, which had a slow evolution of the caseload extending along most of 2020. We found that humidity plays a prominent role in modulating the variation of COVID-19 positive cases through a negative-slope linear relationship, with an optimal lag of 9 days between the meteorological observation and the positive case report. This relationship is specific to winter months, when relative humidity predicts up to half of the variance in positive case count. Our results provide a tool to anticipate possible local surges in COVID-19 cases after events of low humidity. More generally, they add to accumulating evidence pointing to dry air as a facilitator of COVID-19 transmission. Fil: Pineda Rojas, Andrea Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Centro de Investigaciones del Mar y la Atmósfera. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Investigaciones del Mar y la Atmósfera; Argentina Fil: Cordo, Sandra Myriam. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; Argentina Fil: Saurral, Ramiro Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Centro de Investigaciones del Mar y la Atmósfera. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Investigaciones del Mar y la Atmósfera; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ciencias de la Atmósfera y los Océanos; Argentina Fil: Jimenez, Jose L.. State University of Colorado at Boulder; Estados Unidos Fil: Marr, Linsey C.. Virginia Tech University; Estados Unidos Fil: Kropff, Emilio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; Argentina |
description |
Possible links between the transmission of COVID-19 and meteorology have been investigated by comparing positive cases across geographical regions or seasons. Little is known, however, about the degree to which environmental conditions modulate the daily dynamics of COVID-19 spread at a given location. One reason for this is that individual waves of the disease typically rise and decay too sharply, making it hard to isolate the contribution of meteorological cycles. To overcome this shortage, we here present a case study of the first wave of the outbreak in the city of Buenos Aires, which had a slow evolution of the caseload extending along most of 2020. We found that humidity plays a prominent role in modulating the variation of COVID-19 positive cases through a negative-slope linear relationship, with an optimal lag of 9 days between the meteorological observation and the positive case report. This relationship is specific to winter months, when relative humidity predicts up to half of the variance in positive case count. Our results provide a tool to anticipate possible local surges in COVID-19 cases after events of low humidity. More generally, they add to accumulating evidence pointing to dry air as a facilitator of COVID-19 transmission. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-07-30 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/138480 Pineda Rojas, Andrea Laura; Cordo, Sandra Myriam; Saurral, Ramiro Ignacio; Jimenez, Jose L.; Marr, Linsey C.; et al.; Relative humidity predicts day-to-day variations in COVID-19 cases in the city of Buenos Aires; American Chemical Society; Environmental Science & Technology; 55; 16; 30-7-2021; 11176–11182 0013-936X CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/138480 |
identifier_str_mv |
Pineda Rojas, Andrea Laura; Cordo, Sandra Myriam; Saurral, Ramiro Ignacio; Jimenez, Jose L.; Marr, Linsey C.; et al.; Relative humidity predicts day-to-day variations in COVID-19 cases in the city of Buenos Aires; American Chemical Society; Environmental Science & Technology; 55; 16; 30-7-2021; 11176–11182 0013-936X CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/10.1021/acs.est.1c02711 info:eu-repo/semantics/altIdentifier/doi/10.1021/acs.est.1c02711 info:eu-repo/semantics/altIdentifier/url/https://www.medrxiv.org/content/10.1101/2021.01.29.21250789v2.full.pdf+html |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Chemical Society |
publisher.none.fl_str_mv |
American Chemical Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613775508897792 |
score |
13.070432 |