Comparison of the energization of self-consistent charged particles vs test particles in a turbulent plasma

Autores
Pugliese, Facundo Leonel; Dmitruk, Pablo Ariel
Año de publicación
2025
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The test particle approach is a widely used method for studying the dynamics ofcharged particles in complex electromagnetic őelds and has been successful in explaining particle energization in turbulent plasmas. However, this approach is fundamentally not self-consistent, as test particles do not generate their own electromagnetic fields and therefore do not interact with their surroundings realistically. In this work, we compare the energization of a population of test protons in a magnetofluid to that of a plasma composed of self-consistent particles. We use a compressible Hall magnetohydrodynamic (CHMHD) model for the test particle case and a hybrid particle-in-cell (HPIC) approach for the self-consistent case, conducting both 2D and 3D simulations. We calculate the rate of energization and conversion to thermal energy in both models, finding a higher temperature for the test particle case. Additionally, we examine the distribution of suprathermal particles and őnd that, in the test particle scenario, these particles eventually occupy the entire domain, while in the self-consistent case, suprathermal particles are confined to specific regions. We conclude that while test particles capture some qualitative features of their self-consistentcounterparts, they miss finer phenomena and tend to overestimate energization.
Fil: Pugliese, Facundo Leonel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Dmitruk, Pablo Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina
Materia
charged particles
magnetohydrodynamic
kinetic
turbulence
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/274419

id CONICETDig_aba56e6aa7ce17f53c0b64d02842cea5
oai_identifier_str oai:ri.conicet.gov.ar:11336/274419
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Comparison of the energization of self-consistent charged particles vs test particles in a turbulent plasmaPugliese, Facundo LeonelDmitruk, Pablo Arielcharged particlesmagnetohydrodynamickineticturbulencehttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1The test particle approach is a widely used method for studying the dynamics ofcharged particles in complex electromagnetic őelds and has been successful in explaining particle energization in turbulent plasmas. However, this approach is fundamentally not self-consistent, as test particles do not generate their own electromagnetic fields and therefore do not interact with their surroundings realistically. In this work, we compare the energization of a population of test protons in a magnetofluid to that of a plasma composed of self-consistent particles. We use a compressible Hall magnetohydrodynamic (CHMHD) model for the test particle case and a hybrid particle-in-cell (HPIC) approach for the self-consistent case, conducting both 2D and 3D simulations. We calculate the rate of energization and conversion to thermal energy in both models, finding a higher temperature for the test particle case. Additionally, we examine the distribution of suprathermal particles and őnd that, in the test particle scenario, these particles eventually occupy the entire domain, while in the self-consistent case, suprathermal particles are confined to specific regions. We conclude that while test particles capture some qualitative features of their self-consistentcounterparts, they miss finer phenomena and tend to overestimate energization.Fil: Pugliese, Facundo Leonel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Dmitruk, Pablo Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; ArgentinaAmerican Institute of Physics2025-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/274419Pugliese, Facundo Leonel; Dmitruk, Pablo Ariel; Comparison of the energization of self-consistent charged particles vs test particles in a turbulent plasma; American Institute of Physics; Physics Of Plasmas; 32; 3; 3-2025; 1-141070-664XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://pubs.aip.org/pop/article/32/3/033902/3339446/Comparison-of-the-energization-of-self-consistentinfo:eu-repo/semantics/altIdentifier/doi/10.1063/5.0250876info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-11-12T09:50:37Zoai:ri.conicet.gov.ar:11336/274419instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-11-12 09:50:38.381CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Comparison of the energization of self-consistent charged particles vs test particles in a turbulent plasma
title Comparison of the energization of self-consistent charged particles vs test particles in a turbulent plasma
spellingShingle Comparison of the energization of self-consistent charged particles vs test particles in a turbulent plasma
Pugliese, Facundo Leonel
charged particles
magnetohydrodynamic
kinetic
turbulence
title_short Comparison of the energization of self-consistent charged particles vs test particles in a turbulent plasma
title_full Comparison of the energization of self-consistent charged particles vs test particles in a turbulent plasma
title_fullStr Comparison of the energization of self-consistent charged particles vs test particles in a turbulent plasma
title_full_unstemmed Comparison of the energization of self-consistent charged particles vs test particles in a turbulent plasma
title_sort Comparison of the energization of self-consistent charged particles vs test particles in a turbulent plasma
dc.creator.none.fl_str_mv Pugliese, Facundo Leonel
Dmitruk, Pablo Ariel
author Pugliese, Facundo Leonel
author_facet Pugliese, Facundo Leonel
Dmitruk, Pablo Ariel
author_role author
author2 Dmitruk, Pablo Ariel
author2_role author
dc.subject.none.fl_str_mv charged particles
magnetohydrodynamic
kinetic
turbulence
topic charged particles
magnetohydrodynamic
kinetic
turbulence
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv The test particle approach is a widely used method for studying the dynamics ofcharged particles in complex electromagnetic őelds and has been successful in explaining particle energization in turbulent plasmas. However, this approach is fundamentally not self-consistent, as test particles do not generate their own electromagnetic fields and therefore do not interact with their surroundings realistically. In this work, we compare the energization of a population of test protons in a magnetofluid to that of a plasma composed of self-consistent particles. We use a compressible Hall magnetohydrodynamic (CHMHD) model for the test particle case and a hybrid particle-in-cell (HPIC) approach for the self-consistent case, conducting both 2D and 3D simulations. We calculate the rate of energization and conversion to thermal energy in both models, finding a higher temperature for the test particle case. Additionally, we examine the distribution of suprathermal particles and őnd that, in the test particle scenario, these particles eventually occupy the entire domain, while in the self-consistent case, suprathermal particles are confined to specific regions. We conclude that while test particles capture some qualitative features of their self-consistentcounterparts, they miss finer phenomena and tend to overestimate energization.
Fil: Pugliese, Facundo Leonel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Dmitruk, Pablo Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina
description The test particle approach is a widely used method for studying the dynamics ofcharged particles in complex electromagnetic őelds and has been successful in explaining particle energization in turbulent plasmas. However, this approach is fundamentally not self-consistent, as test particles do not generate their own electromagnetic fields and therefore do not interact with their surroundings realistically. In this work, we compare the energization of a population of test protons in a magnetofluid to that of a plasma composed of self-consistent particles. We use a compressible Hall magnetohydrodynamic (CHMHD) model for the test particle case and a hybrid particle-in-cell (HPIC) approach for the self-consistent case, conducting both 2D and 3D simulations. We calculate the rate of energization and conversion to thermal energy in both models, finding a higher temperature for the test particle case. Additionally, we examine the distribution of suprathermal particles and őnd that, in the test particle scenario, these particles eventually occupy the entire domain, while in the self-consistent case, suprathermal particles are confined to specific regions. We conclude that while test particles capture some qualitative features of their self-consistentcounterparts, they miss finer phenomena and tend to overestimate energization.
publishDate 2025
dc.date.none.fl_str_mv 2025-03
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/274419
Pugliese, Facundo Leonel; Dmitruk, Pablo Ariel; Comparison of the energization of self-consistent charged particles vs test particles in a turbulent plasma; American Institute of Physics; Physics Of Plasmas; 32; 3; 3-2025; 1-14
1070-664X
CONICET Digital
CONICET
url http://hdl.handle.net/11336/274419
identifier_str_mv Pugliese, Facundo Leonel; Dmitruk, Pablo Ariel; Comparison of the energization of self-consistent charged particles vs test particles in a turbulent plasma; American Institute of Physics; Physics Of Plasmas; 32; 3; 3-2025; 1-14
1070-664X
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://pubs.aip.org/pop/article/32/3/033902/3339446/Comparison-of-the-energization-of-self-consistent
info:eu-repo/semantics/altIdentifier/doi/10.1063/5.0250876
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Institute of Physics
publisher.none.fl_str_mv American Institute of Physics
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1848598117437407232
score 13.3211565