Sowing date, genotype choice, and water environment control soybean yields in central Argentina
- Autores
- Vitantonio Mazzini, Lucas Nicolás; Gómez, Damián; Gambin, Brenda Laura; Di Mauro, Guido; Iglesias, Rodrigo; Costanzi, Jerónimo; Jobbágy, Esteban G.; Borras, Lucas
- Año de publicación
- 2020
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Soybean [Glycine max (L.) Merr.] is one of the most important crops worldwide, and Argentina is the third largest global grain producer and the worlds´ largest meal exporter. Under the continuous challenge of increasing crop yields, especially in the central temperate region of the country, there is a growing need to optimize management in relation to the environment that each specific farm and paddock presents. Understanding the impact of available technologies and management options can help optimize crop design. Here, we identify and quantify the effect of the most relevant variables affecting soybean yield by analyzing a database that includes 53 field trials with four common commercial genotypes, reporting 50 management and environmental variables. Linear mixed-effect models revealed that two management decisions (genotype and sowing date selection) and three environmental variables (rainfall during the reproductive crop period from R1 to R7, soil type [Hapludoll vs. Argiudoll], and water table presence above or below 2 m of depth from the surface) helped explain ∼40% of total yield variability, which ranged from 1,675 to 7,226 kg ha−1 and averaged 5,133 kg ha−1. Water table presence generated higher and more stable yields particularly in coarse-textured Hapludolls and under low-rainfall conditions. Results highlight specific management and environmental conditions that affect soybean crop yields in the region, pointing to effective pathways toward yield gap reductions.
Fil: Vitantonio Mazzini, Lucas Nicolás. Universidad Nacional de Rosario. Facultad de Ciencias Agrarias. Cátedra de Cultivo Extensivos Cereales y Oleaginosas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Investigaciones en Ciencias Agrarias de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Agrarias. Instituto de Investigaciones en Ciencias Agrarias de Rosario; Argentina
Fil: Gómez, Damián. Don Mario; Argentina
Fil: Gambin, Brenda Laura. Universidad Nacional de Rosario. Facultad de Ciencias Agrarias. Cátedra de Cultivo Extensivos Cereales y Oleaginosas; Argentina
Fil: Di Mauro, Guido. Don Mario; Argentina
Fil: Iglesias, Rodrigo. Don Mario; Argentina
Fil: Costanzi, Jerónimo. Don Mario; Argentina
Fil: Jobbágy, Esteban G.. Universidad Nacional de San Luis; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi"; Argentina
Fil: Borras, Lucas. Universidad Nacional de Rosario. Facultad de Ciencias Agrarias. Cátedra de Cultivo Extensivos Cereales y Oleaginosas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Investigaciones en Ciencias Agrarias de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Agrarias. Instituto de Investigaciones en Ciencias Agrarias de Rosario; Argentina - Materia
-
soybean
yield
predicting yield
sowing date - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/184587
Ver los metadatos del registro completo
id |
CONICETDig_aa2ceb17507bdcd41810e251f862cf83 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/184587 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Sowing date, genotype choice, and water environment control soybean yields in central ArgentinaVitantonio Mazzini, Lucas NicolásGómez, DamiánGambin, Brenda LauraDi Mauro, GuidoIglesias, RodrigoCostanzi, JerónimoJobbágy, Esteban G.Borras, Lucassoybeanyieldpredicting yieldsowing datehttps://purl.org/becyt/ford/4.1https://purl.org/becyt/ford/4Soybean [Glycine max (L.) Merr.] is one of the most important crops worldwide, and Argentina is the third largest global grain producer and the worlds´ largest meal exporter. Under the continuous challenge of increasing crop yields, especially in the central temperate region of the country, there is a growing need to optimize management in relation to the environment that each specific farm and paddock presents. Understanding the impact of available technologies and management options can help optimize crop design. Here, we identify and quantify the effect of the most relevant variables affecting soybean yield by analyzing a database that includes 53 field trials with four common commercial genotypes, reporting 50 management and environmental variables. Linear mixed-effect models revealed that two management decisions (genotype and sowing date selection) and three environmental variables (rainfall during the reproductive crop period from R1 to R7, soil type [Hapludoll vs. Argiudoll], and water table presence above or below 2 m of depth from the surface) helped explain ∼40% of total yield variability, which ranged from 1,675 to 7,226 kg ha−1 and averaged 5,133 kg ha−1. Water table presence generated higher and more stable yields particularly in coarse-textured Hapludolls and under low-rainfall conditions. Results highlight specific management and environmental conditions that affect soybean crop yields in the region, pointing to effective pathways toward yield gap reductions.Fil: Vitantonio Mazzini, Lucas Nicolás. Universidad Nacional de Rosario. Facultad de Ciencias Agrarias. Cátedra de Cultivo Extensivos Cereales y Oleaginosas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Investigaciones en Ciencias Agrarias de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Agrarias. Instituto de Investigaciones en Ciencias Agrarias de Rosario; ArgentinaFil: Gómez, Damián. Don Mario; ArgentinaFil: Gambin, Brenda Laura. Universidad Nacional de Rosario. Facultad de Ciencias Agrarias. Cátedra de Cultivo Extensivos Cereales y Oleaginosas; ArgentinaFil: Di Mauro, Guido. Don Mario; ArgentinaFil: Iglesias, Rodrigo. Don Mario; ArgentinaFil: Costanzi, Jerónimo. Don Mario; ArgentinaFil: Jobbágy, Esteban G.. Universidad Nacional de San Luis; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi"; ArgentinaFil: Borras, Lucas. Universidad Nacional de Rosario. Facultad de Ciencias Agrarias. Cátedra de Cultivo Extensivos Cereales y Oleaginosas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Investigaciones en Ciencias Agrarias de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Agrarias. Instituto de Investigaciones en Ciencias Agrarias de Rosario; ArgentinaCrop Science Society of America2020-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/184587Vitantonio Mazzini, Lucas Nicolás; Gómez, Damián; Gambin, Brenda Laura; Di Mauro, Guido; Iglesias, Rodrigo; et al.; Sowing date, genotype choice, and water environment control soybean yields in central Argentina; Crop Science Society of America; Crop Science; 61; 1; 8-2020; 715-7280011-183XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/abs/10.1002/csc2.20315info:eu-repo/semantics/altIdentifier/doi/10.1002/csc2.20315info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:45:57Zoai:ri.conicet.gov.ar:11336/184587instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:45:57.403CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Sowing date, genotype choice, and water environment control soybean yields in central Argentina |
title |
Sowing date, genotype choice, and water environment control soybean yields in central Argentina |
spellingShingle |
Sowing date, genotype choice, and water environment control soybean yields in central Argentina Vitantonio Mazzini, Lucas Nicolás soybean yield predicting yield sowing date |
title_short |
Sowing date, genotype choice, and water environment control soybean yields in central Argentina |
title_full |
Sowing date, genotype choice, and water environment control soybean yields in central Argentina |
title_fullStr |
Sowing date, genotype choice, and water environment control soybean yields in central Argentina |
title_full_unstemmed |
Sowing date, genotype choice, and water environment control soybean yields in central Argentina |
title_sort |
Sowing date, genotype choice, and water environment control soybean yields in central Argentina |
dc.creator.none.fl_str_mv |
Vitantonio Mazzini, Lucas Nicolás Gómez, Damián Gambin, Brenda Laura Di Mauro, Guido Iglesias, Rodrigo Costanzi, Jerónimo Jobbágy, Esteban G. Borras, Lucas |
author |
Vitantonio Mazzini, Lucas Nicolás |
author_facet |
Vitantonio Mazzini, Lucas Nicolás Gómez, Damián Gambin, Brenda Laura Di Mauro, Guido Iglesias, Rodrigo Costanzi, Jerónimo Jobbágy, Esteban G. Borras, Lucas |
author_role |
author |
author2 |
Gómez, Damián Gambin, Brenda Laura Di Mauro, Guido Iglesias, Rodrigo Costanzi, Jerónimo Jobbágy, Esteban G. Borras, Lucas |
author2_role |
author author author author author author author |
dc.subject.none.fl_str_mv |
soybean yield predicting yield sowing date |
topic |
soybean yield predicting yield sowing date |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/4.1 https://purl.org/becyt/ford/4 |
dc.description.none.fl_txt_mv |
Soybean [Glycine max (L.) Merr.] is one of the most important crops worldwide, and Argentina is the third largest global grain producer and the worlds´ largest meal exporter. Under the continuous challenge of increasing crop yields, especially in the central temperate region of the country, there is a growing need to optimize management in relation to the environment that each specific farm and paddock presents. Understanding the impact of available technologies and management options can help optimize crop design. Here, we identify and quantify the effect of the most relevant variables affecting soybean yield by analyzing a database that includes 53 field trials with four common commercial genotypes, reporting 50 management and environmental variables. Linear mixed-effect models revealed that two management decisions (genotype and sowing date selection) and three environmental variables (rainfall during the reproductive crop period from R1 to R7, soil type [Hapludoll vs. Argiudoll], and water table presence above or below 2 m of depth from the surface) helped explain ∼40% of total yield variability, which ranged from 1,675 to 7,226 kg ha−1 and averaged 5,133 kg ha−1. Water table presence generated higher and more stable yields particularly in coarse-textured Hapludolls and under low-rainfall conditions. Results highlight specific management and environmental conditions that affect soybean crop yields in the region, pointing to effective pathways toward yield gap reductions. Fil: Vitantonio Mazzini, Lucas Nicolás. Universidad Nacional de Rosario. Facultad de Ciencias Agrarias. Cátedra de Cultivo Extensivos Cereales y Oleaginosas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Investigaciones en Ciencias Agrarias de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Agrarias. Instituto de Investigaciones en Ciencias Agrarias de Rosario; Argentina Fil: Gómez, Damián. Don Mario; Argentina Fil: Gambin, Brenda Laura. Universidad Nacional de Rosario. Facultad de Ciencias Agrarias. Cátedra de Cultivo Extensivos Cereales y Oleaginosas; Argentina Fil: Di Mauro, Guido. Don Mario; Argentina Fil: Iglesias, Rodrigo. Don Mario; Argentina Fil: Costanzi, Jerónimo. Don Mario; Argentina Fil: Jobbágy, Esteban G.. Universidad Nacional de San Luis; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi"; Argentina Fil: Borras, Lucas. Universidad Nacional de Rosario. Facultad de Ciencias Agrarias. Cátedra de Cultivo Extensivos Cereales y Oleaginosas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Investigaciones en Ciencias Agrarias de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Agrarias. Instituto de Investigaciones en Ciencias Agrarias de Rosario; Argentina |
description |
Soybean [Glycine max (L.) Merr.] is one of the most important crops worldwide, and Argentina is the third largest global grain producer and the worlds´ largest meal exporter. Under the continuous challenge of increasing crop yields, especially in the central temperate region of the country, there is a growing need to optimize management in relation to the environment that each specific farm and paddock presents. Understanding the impact of available technologies and management options can help optimize crop design. Here, we identify and quantify the effect of the most relevant variables affecting soybean yield by analyzing a database that includes 53 field trials with four common commercial genotypes, reporting 50 management and environmental variables. Linear mixed-effect models revealed that two management decisions (genotype and sowing date selection) and three environmental variables (rainfall during the reproductive crop period from R1 to R7, soil type [Hapludoll vs. Argiudoll], and water table presence above or below 2 m of depth from the surface) helped explain ∼40% of total yield variability, which ranged from 1,675 to 7,226 kg ha−1 and averaged 5,133 kg ha−1. Water table presence generated higher and more stable yields particularly in coarse-textured Hapludolls and under low-rainfall conditions. Results highlight specific management and environmental conditions that affect soybean crop yields in the region, pointing to effective pathways toward yield gap reductions. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-08 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/184587 Vitantonio Mazzini, Lucas Nicolás; Gómez, Damián; Gambin, Brenda Laura; Di Mauro, Guido; Iglesias, Rodrigo; et al.; Sowing date, genotype choice, and water environment control soybean yields in central Argentina; Crop Science Society of America; Crop Science; 61; 1; 8-2020; 715-728 0011-183X CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/184587 |
identifier_str_mv |
Vitantonio Mazzini, Lucas Nicolás; Gómez, Damián; Gambin, Brenda Laura; Di Mauro, Guido; Iglesias, Rodrigo; et al.; Sowing date, genotype choice, and water environment control soybean yields in central Argentina; Crop Science Society of America; Crop Science; 61; 1; 8-2020; 715-728 0011-183X CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/abs/10.1002/csc2.20315 info:eu-repo/semantics/altIdentifier/doi/10.1002/csc2.20315 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Crop Science Society of America |
publisher.none.fl_str_mv |
Crop Science Society of America |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842268763754332160 |
score |
13.13397 |