Cell-based maximum entropy approximants for three-dimensional domains: Application in large strain elastodynamics using the meshless total Lagrangian explicit dynamics method

Autores
Mountris, Konstantinos A.; Bourantas, George C.; Millán, Raúl Daniel; Joldes, Grand R.; Miller, Karol; Pueyo, Esther; Wittek, Adam
Año de publicación
2019
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We present the cell-based maximum entropy (CME) approximants in E3 space by constructing the smooth approximation distance function to polyhedral surfaces. CME is a meshfree approximation method combining the properties of the maximum entropy approximants and the compact support of element-based interpolants. The method is evaluated in problems of large strain elastodynamics for three-dimensional (3D) continua using the well-established meshless total Lagrangian explicit dynamics method. The accuracy and efficiency of the method is assessed in several numerical examples in terms of computational time, accuracy in boundary conditions imposition, and strain energy density error. Due to the smoothness of CME basis functions, the numerical stability in explicit time integration is preserved for large time step. The challenging task of essential boundary condition (EBC) imposition in noninterpolating meshless methods (eg, moving least squares) is eliminated in CME due to the weak Kronecker-delta property. The EBCs are imposed directly, similar to the finite element method. CME is proven a valuable alternative to other meshless and element-based methods for large-scale elastodynamics in 3D. A naive implementation of the CME approximants in E3 is available to download at https://www.mountris.org/software/mlab/cme.
Fil: Mountris, Konstantinos A.. Universidad de Zaragoza; España
Fil: Bourantas, George C.. University of Western Australia; Australia
Fil: Millán, Raúl Daniel. Universidad Nacional de Cuyo. Facultad de Ciencias Aplicadas a la Industria; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina
Fil: Joldes, Grand R.. University of Western Australia; Australia
Fil: Miller, Karol. Cardiff University; Reino Unido. University of Western Australia; Australia
Fil: Pueyo, Esther. Centro de Investigacion Biomedica En Red.; España. Universidad de Zaragoza; España
Fil: Wittek, Adam. University of Western Australia; Australia
Materia
CELL-BASED MAXIMUM ENTROPY
ESSENTIAL BOUNDARY CONDITION IMPOSITION
EXPLICIT TIME INTEGRATION
LARGE STRAIN ELASTODYNAMICS
MESHLESS
WEAK KRONECKER-DELTA
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/153028

id CONICETDig_aa028fcbb36ff26fa24570e602d29393
oai_identifier_str oai:ri.conicet.gov.ar:11336/153028
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Cell-based maximum entropy approximants for three-dimensional domains: Application in large strain elastodynamics using the meshless total Lagrangian explicit dynamics methodMountris, Konstantinos A.Bourantas, George C.Millán, Raúl DanielJoldes, Grand R.Miller, KarolPueyo, EstherWittek, AdamCELL-BASED MAXIMUM ENTROPYESSENTIAL BOUNDARY CONDITION IMPOSITIONEXPLICIT TIME INTEGRATIONLARGE STRAIN ELASTODYNAMICSMESHLESSWEAK KRONECKER-DELTAhttps://purl.org/becyt/ford/2.3https://purl.org/becyt/ford/2https://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We present the cell-based maximum entropy (CME) approximants in E3 space by constructing the smooth approximation distance function to polyhedral surfaces. CME is a meshfree approximation method combining the properties of the maximum entropy approximants and the compact support of element-based interpolants. The method is evaluated in problems of large strain elastodynamics for three-dimensional (3D) continua using the well-established meshless total Lagrangian explicit dynamics method. The accuracy and efficiency of the method is assessed in several numerical examples in terms of computational time, accuracy in boundary conditions imposition, and strain energy density error. Due to the smoothness of CME basis functions, the numerical stability in explicit time integration is preserved for large time step. The challenging task of essential boundary condition (EBC) imposition in noninterpolating meshless methods (eg, moving least squares) is eliminated in CME due to the weak Kronecker-delta property. The EBCs are imposed directly, similar to the finite element method. CME is proven a valuable alternative to other meshless and element-based methods for large-scale elastodynamics in 3D. A naive implementation of the CME approximants in E3 is available to download at https://www.mountris.org/software/mlab/cme.Fil: Mountris, Konstantinos A.. Universidad de Zaragoza; EspañaFil: Bourantas, George C.. University of Western Australia; AustraliaFil: Millán, Raúl Daniel. Universidad Nacional de Cuyo. Facultad de Ciencias Aplicadas a la Industria; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; ArgentinaFil: Joldes, Grand R.. University of Western Australia; AustraliaFil: Miller, Karol. Cardiff University; Reino Unido. University of Western Australia; AustraliaFil: Pueyo, Esther. Centro de Investigacion Biomedica En Red.; España. Universidad de Zaragoza; EspañaFil: Wittek, Adam. University of Western Australia; AustraliaJohn Wiley & Sons Ltd2019-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/153028Mountris, Konstantinos A.; Bourantas, George C.; Millán, Raúl Daniel; Joldes, Grand R.; Miller, Karol; et al.; Cell-based maximum entropy approximants for three-dimensional domains: Application in large strain elastodynamics using the meshless total Lagrangian explicit dynamics method; John Wiley & Sons Ltd; International Journal for Numerical Methods in Engineering; 121; 3; 9-2019; 477-4910029-5981CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.6218info:eu-repo/semantics/altIdentifier/doi/10.1002/nme.6218info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-17T11:21:16Zoai:ri.conicet.gov.ar:11336/153028instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-17 11:21:17.03CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Cell-based maximum entropy approximants for three-dimensional domains: Application in large strain elastodynamics using the meshless total Lagrangian explicit dynamics method
title Cell-based maximum entropy approximants for three-dimensional domains: Application in large strain elastodynamics using the meshless total Lagrangian explicit dynamics method
spellingShingle Cell-based maximum entropy approximants for three-dimensional domains: Application in large strain elastodynamics using the meshless total Lagrangian explicit dynamics method
Mountris, Konstantinos A.
CELL-BASED MAXIMUM ENTROPY
ESSENTIAL BOUNDARY CONDITION IMPOSITION
EXPLICIT TIME INTEGRATION
LARGE STRAIN ELASTODYNAMICS
MESHLESS
WEAK KRONECKER-DELTA
title_short Cell-based maximum entropy approximants for three-dimensional domains: Application in large strain elastodynamics using the meshless total Lagrangian explicit dynamics method
title_full Cell-based maximum entropy approximants for three-dimensional domains: Application in large strain elastodynamics using the meshless total Lagrangian explicit dynamics method
title_fullStr Cell-based maximum entropy approximants for three-dimensional domains: Application in large strain elastodynamics using the meshless total Lagrangian explicit dynamics method
title_full_unstemmed Cell-based maximum entropy approximants for three-dimensional domains: Application in large strain elastodynamics using the meshless total Lagrangian explicit dynamics method
title_sort Cell-based maximum entropy approximants for three-dimensional domains: Application in large strain elastodynamics using the meshless total Lagrangian explicit dynamics method
dc.creator.none.fl_str_mv Mountris, Konstantinos A.
Bourantas, George C.
Millán, Raúl Daniel
Joldes, Grand R.
Miller, Karol
Pueyo, Esther
Wittek, Adam
author Mountris, Konstantinos A.
author_facet Mountris, Konstantinos A.
Bourantas, George C.
Millán, Raúl Daniel
Joldes, Grand R.
Miller, Karol
Pueyo, Esther
Wittek, Adam
author_role author
author2 Bourantas, George C.
Millán, Raúl Daniel
Joldes, Grand R.
Miller, Karol
Pueyo, Esther
Wittek, Adam
author2_role author
author
author
author
author
author
dc.subject.none.fl_str_mv CELL-BASED MAXIMUM ENTROPY
ESSENTIAL BOUNDARY CONDITION IMPOSITION
EXPLICIT TIME INTEGRATION
LARGE STRAIN ELASTODYNAMICS
MESHLESS
WEAK KRONECKER-DELTA
topic CELL-BASED MAXIMUM ENTROPY
ESSENTIAL BOUNDARY CONDITION IMPOSITION
EXPLICIT TIME INTEGRATION
LARGE STRAIN ELASTODYNAMICS
MESHLESS
WEAK KRONECKER-DELTA
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.3
https://purl.org/becyt/ford/2
https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We present the cell-based maximum entropy (CME) approximants in E3 space by constructing the smooth approximation distance function to polyhedral surfaces. CME is a meshfree approximation method combining the properties of the maximum entropy approximants and the compact support of element-based interpolants. The method is evaluated in problems of large strain elastodynamics for three-dimensional (3D) continua using the well-established meshless total Lagrangian explicit dynamics method. The accuracy and efficiency of the method is assessed in several numerical examples in terms of computational time, accuracy in boundary conditions imposition, and strain energy density error. Due to the smoothness of CME basis functions, the numerical stability in explicit time integration is preserved for large time step. The challenging task of essential boundary condition (EBC) imposition in noninterpolating meshless methods (eg, moving least squares) is eliminated in CME due to the weak Kronecker-delta property. The EBCs are imposed directly, similar to the finite element method. CME is proven a valuable alternative to other meshless and element-based methods for large-scale elastodynamics in 3D. A naive implementation of the CME approximants in E3 is available to download at https://www.mountris.org/software/mlab/cme.
Fil: Mountris, Konstantinos A.. Universidad de Zaragoza; España
Fil: Bourantas, George C.. University of Western Australia; Australia
Fil: Millán, Raúl Daniel. Universidad Nacional de Cuyo. Facultad de Ciencias Aplicadas a la Industria; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina
Fil: Joldes, Grand R.. University of Western Australia; Australia
Fil: Miller, Karol. Cardiff University; Reino Unido. University of Western Australia; Australia
Fil: Pueyo, Esther. Centro de Investigacion Biomedica En Red.; España. Universidad de Zaragoza; España
Fil: Wittek, Adam. University of Western Australia; Australia
description We present the cell-based maximum entropy (CME) approximants in E3 space by constructing the smooth approximation distance function to polyhedral surfaces. CME is a meshfree approximation method combining the properties of the maximum entropy approximants and the compact support of element-based interpolants. The method is evaluated in problems of large strain elastodynamics for three-dimensional (3D) continua using the well-established meshless total Lagrangian explicit dynamics method. The accuracy and efficiency of the method is assessed in several numerical examples in terms of computational time, accuracy in boundary conditions imposition, and strain energy density error. Due to the smoothness of CME basis functions, the numerical stability in explicit time integration is preserved for large time step. The challenging task of essential boundary condition (EBC) imposition in noninterpolating meshless methods (eg, moving least squares) is eliminated in CME due to the weak Kronecker-delta property. The EBCs are imposed directly, similar to the finite element method. CME is proven a valuable alternative to other meshless and element-based methods for large-scale elastodynamics in 3D. A naive implementation of the CME approximants in E3 is available to download at https://www.mountris.org/software/mlab/cme.
publishDate 2019
dc.date.none.fl_str_mv 2019-09
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/153028
Mountris, Konstantinos A.; Bourantas, George C.; Millán, Raúl Daniel; Joldes, Grand R.; Miller, Karol; et al.; Cell-based maximum entropy approximants for three-dimensional domains: Application in large strain elastodynamics using the meshless total Lagrangian explicit dynamics method; John Wiley & Sons Ltd; International Journal for Numerical Methods in Engineering; 121; 3; 9-2019; 477-491
0029-5981
CONICET Digital
CONICET
url http://hdl.handle.net/11336/153028
identifier_str_mv Mountris, Konstantinos A.; Bourantas, George C.; Millán, Raúl Daniel; Joldes, Grand R.; Miller, Karol; et al.; Cell-based maximum entropy approximants for three-dimensional domains: Application in large strain elastodynamics using the meshless total Lagrangian explicit dynamics method; John Wiley & Sons Ltd; International Journal for Numerical Methods in Engineering; 121; 3; 9-2019; 477-491
0029-5981
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.6218
info:eu-repo/semantics/altIdentifier/doi/10.1002/nme.6218
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv John Wiley & Sons Ltd
publisher.none.fl_str_mv John Wiley & Sons Ltd
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1843606558709121024
score 13.001348