Cell-based maximum entropy approximants for three-dimensional domains: Application in large strain elastodynamics using the meshless total Lagrangian explicit dynamics method
- Autores
- Mountris, Konstantinos A.; Bourantas, George C.; Millán, Raúl Daniel; Joldes, Grand R.; Miller, Karol; Pueyo, Esther; Wittek, Adam
- Año de publicación
- 2019
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We present the cell-based maximum entropy (CME) approximants in E3 space by constructing the smooth approximation distance function to polyhedral surfaces. CME is a meshfree approximation method combining the properties of the maximum entropy approximants and the compact support of element-based interpolants. The method is evaluated in problems of large strain elastodynamics for three-dimensional (3D) continua using the well-established meshless total Lagrangian explicit dynamics method. The accuracy and efficiency of the method is assessed in several numerical examples in terms of computational time, accuracy in boundary conditions imposition, and strain energy density error. Due to the smoothness of CME basis functions, the numerical stability in explicit time integration is preserved for large time step. The challenging task of essential boundary condition (EBC) imposition in noninterpolating meshless methods (eg, moving least squares) is eliminated in CME due to the weak Kronecker-delta property. The EBCs are imposed directly, similar to the finite element method. CME is proven a valuable alternative to other meshless and element-based methods for large-scale elastodynamics in 3D. A naive implementation of the CME approximants in E3 is available to download at https://www.mountris.org/software/mlab/cme.
Fil: Mountris, Konstantinos A.. Universidad de Zaragoza; España
Fil: Bourantas, George C.. University of Western Australia; Australia
Fil: Millán, Raúl Daniel. Universidad Nacional de Cuyo. Facultad de Ciencias Aplicadas a la Industria; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina
Fil: Joldes, Grand R.. University of Western Australia; Australia
Fil: Miller, Karol. Cardiff University; Reino Unido. University of Western Australia; Australia
Fil: Pueyo, Esther. Centro de Investigacion Biomedica En Red.; España. Universidad de Zaragoza; España
Fil: Wittek, Adam. University of Western Australia; Australia - Materia
-
CELL-BASED MAXIMUM ENTROPY
ESSENTIAL BOUNDARY CONDITION IMPOSITION
EXPLICIT TIME INTEGRATION
LARGE STRAIN ELASTODYNAMICS
MESHLESS
WEAK KRONECKER-DELTA - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/153028
Ver los metadatos del registro completo
id |
CONICETDig_aa028fcbb36ff26fa24570e602d29393 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/153028 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Cell-based maximum entropy approximants for three-dimensional domains: Application in large strain elastodynamics using the meshless total Lagrangian explicit dynamics methodMountris, Konstantinos A.Bourantas, George C.Millán, Raúl DanielJoldes, Grand R.Miller, KarolPueyo, EstherWittek, AdamCELL-BASED MAXIMUM ENTROPYESSENTIAL BOUNDARY CONDITION IMPOSITIONEXPLICIT TIME INTEGRATIONLARGE STRAIN ELASTODYNAMICSMESHLESSWEAK KRONECKER-DELTAhttps://purl.org/becyt/ford/2.3https://purl.org/becyt/ford/2https://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We present the cell-based maximum entropy (CME) approximants in E3 space by constructing the smooth approximation distance function to polyhedral surfaces. CME is a meshfree approximation method combining the properties of the maximum entropy approximants and the compact support of element-based interpolants. The method is evaluated in problems of large strain elastodynamics for three-dimensional (3D) continua using the well-established meshless total Lagrangian explicit dynamics method. The accuracy and efficiency of the method is assessed in several numerical examples in terms of computational time, accuracy in boundary conditions imposition, and strain energy density error. Due to the smoothness of CME basis functions, the numerical stability in explicit time integration is preserved for large time step. The challenging task of essential boundary condition (EBC) imposition in noninterpolating meshless methods (eg, moving least squares) is eliminated in CME due to the weak Kronecker-delta property. The EBCs are imposed directly, similar to the finite element method. CME is proven a valuable alternative to other meshless and element-based methods for large-scale elastodynamics in 3D. A naive implementation of the CME approximants in E3 is available to download at https://www.mountris.org/software/mlab/cme.Fil: Mountris, Konstantinos A.. Universidad de Zaragoza; EspañaFil: Bourantas, George C.. University of Western Australia; AustraliaFil: Millán, Raúl Daniel. Universidad Nacional de Cuyo. Facultad de Ciencias Aplicadas a la Industria; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; ArgentinaFil: Joldes, Grand R.. University of Western Australia; AustraliaFil: Miller, Karol. Cardiff University; Reino Unido. University of Western Australia; AustraliaFil: Pueyo, Esther. Centro de Investigacion Biomedica En Red.; España. Universidad de Zaragoza; EspañaFil: Wittek, Adam. University of Western Australia; AustraliaJohn Wiley & Sons Ltd2019-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/153028Mountris, Konstantinos A.; Bourantas, George C.; Millán, Raúl Daniel; Joldes, Grand R.; Miller, Karol; et al.; Cell-based maximum entropy approximants for three-dimensional domains: Application in large strain elastodynamics using the meshless total Lagrangian explicit dynamics method; John Wiley & Sons Ltd; International Journal for Numerical Methods in Engineering; 121; 3; 9-2019; 477-4910029-5981CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.6218info:eu-repo/semantics/altIdentifier/doi/10.1002/nme.6218info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-17T11:21:16Zoai:ri.conicet.gov.ar:11336/153028instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-17 11:21:17.03CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Cell-based maximum entropy approximants for three-dimensional domains: Application in large strain elastodynamics using the meshless total Lagrangian explicit dynamics method |
title |
Cell-based maximum entropy approximants for three-dimensional domains: Application in large strain elastodynamics using the meshless total Lagrangian explicit dynamics method |
spellingShingle |
Cell-based maximum entropy approximants for three-dimensional domains: Application in large strain elastodynamics using the meshless total Lagrangian explicit dynamics method Mountris, Konstantinos A. CELL-BASED MAXIMUM ENTROPY ESSENTIAL BOUNDARY CONDITION IMPOSITION EXPLICIT TIME INTEGRATION LARGE STRAIN ELASTODYNAMICS MESHLESS WEAK KRONECKER-DELTA |
title_short |
Cell-based maximum entropy approximants for three-dimensional domains: Application in large strain elastodynamics using the meshless total Lagrangian explicit dynamics method |
title_full |
Cell-based maximum entropy approximants for three-dimensional domains: Application in large strain elastodynamics using the meshless total Lagrangian explicit dynamics method |
title_fullStr |
Cell-based maximum entropy approximants for three-dimensional domains: Application in large strain elastodynamics using the meshless total Lagrangian explicit dynamics method |
title_full_unstemmed |
Cell-based maximum entropy approximants for three-dimensional domains: Application in large strain elastodynamics using the meshless total Lagrangian explicit dynamics method |
title_sort |
Cell-based maximum entropy approximants for three-dimensional domains: Application in large strain elastodynamics using the meshless total Lagrangian explicit dynamics method |
dc.creator.none.fl_str_mv |
Mountris, Konstantinos A. Bourantas, George C. Millán, Raúl Daniel Joldes, Grand R. Miller, Karol Pueyo, Esther Wittek, Adam |
author |
Mountris, Konstantinos A. |
author_facet |
Mountris, Konstantinos A. Bourantas, George C. Millán, Raúl Daniel Joldes, Grand R. Miller, Karol Pueyo, Esther Wittek, Adam |
author_role |
author |
author2 |
Bourantas, George C. Millán, Raúl Daniel Joldes, Grand R. Miller, Karol Pueyo, Esther Wittek, Adam |
author2_role |
author author author author author author |
dc.subject.none.fl_str_mv |
CELL-BASED MAXIMUM ENTROPY ESSENTIAL BOUNDARY CONDITION IMPOSITION EXPLICIT TIME INTEGRATION LARGE STRAIN ELASTODYNAMICS MESHLESS WEAK KRONECKER-DELTA |
topic |
CELL-BASED MAXIMUM ENTROPY ESSENTIAL BOUNDARY CONDITION IMPOSITION EXPLICIT TIME INTEGRATION LARGE STRAIN ELASTODYNAMICS MESHLESS WEAK KRONECKER-DELTA |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.3 https://purl.org/becyt/ford/2 https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We present the cell-based maximum entropy (CME) approximants in E3 space by constructing the smooth approximation distance function to polyhedral surfaces. CME is a meshfree approximation method combining the properties of the maximum entropy approximants and the compact support of element-based interpolants. The method is evaluated in problems of large strain elastodynamics for three-dimensional (3D) continua using the well-established meshless total Lagrangian explicit dynamics method. The accuracy and efficiency of the method is assessed in several numerical examples in terms of computational time, accuracy in boundary conditions imposition, and strain energy density error. Due to the smoothness of CME basis functions, the numerical stability in explicit time integration is preserved for large time step. The challenging task of essential boundary condition (EBC) imposition in noninterpolating meshless methods (eg, moving least squares) is eliminated in CME due to the weak Kronecker-delta property. The EBCs are imposed directly, similar to the finite element method. CME is proven a valuable alternative to other meshless and element-based methods for large-scale elastodynamics in 3D. A naive implementation of the CME approximants in E3 is available to download at https://www.mountris.org/software/mlab/cme. Fil: Mountris, Konstantinos A.. Universidad de Zaragoza; España Fil: Bourantas, George C.. University of Western Australia; Australia Fil: Millán, Raúl Daniel. Universidad Nacional de Cuyo. Facultad de Ciencias Aplicadas a la Industria; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina Fil: Joldes, Grand R.. University of Western Australia; Australia Fil: Miller, Karol. Cardiff University; Reino Unido. University of Western Australia; Australia Fil: Pueyo, Esther. Centro de Investigacion Biomedica En Red.; España. Universidad de Zaragoza; España Fil: Wittek, Adam. University of Western Australia; Australia |
description |
We present the cell-based maximum entropy (CME) approximants in E3 space by constructing the smooth approximation distance function to polyhedral surfaces. CME is a meshfree approximation method combining the properties of the maximum entropy approximants and the compact support of element-based interpolants. The method is evaluated in problems of large strain elastodynamics for three-dimensional (3D) continua using the well-established meshless total Lagrangian explicit dynamics method. The accuracy and efficiency of the method is assessed in several numerical examples in terms of computational time, accuracy in boundary conditions imposition, and strain energy density error. Due to the smoothness of CME basis functions, the numerical stability in explicit time integration is preserved for large time step. The challenging task of essential boundary condition (EBC) imposition in noninterpolating meshless methods (eg, moving least squares) is eliminated in CME due to the weak Kronecker-delta property. The EBCs are imposed directly, similar to the finite element method. CME is proven a valuable alternative to other meshless and element-based methods for large-scale elastodynamics in 3D. A naive implementation of the CME approximants in E3 is available to download at https://www.mountris.org/software/mlab/cme. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-09 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/153028 Mountris, Konstantinos A.; Bourantas, George C.; Millán, Raúl Daniel; Joldes, Grand R.; Miller, Karol; et al.; Cell-based maximum entropy approximants for three-dimensional domains: Application in large strain elastodynamics using the meshless total Lagrangian explicit dynamics method; John Wiley & Sons Ltd; International Journal for Numerical Methods in Engineering; 121; 3; 9-2019; 477-491 0029-5981 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/153028 |
identifier_str_mv |
Mountris, Konstantinos A.; Bourantas, George C.; Millán, Raúl Daniel; Joldes, Grand R.; Miller, Karol; et al.; Cell-based maximum entropy approximants for three-dimensional domains: Application in large strain elastodynamics using the meshless total Lagrangian explicit dynamics method; John Wiley & Sons Ltd; International Journal for Numerical Methods in Engineering; 121; 3; 9-2019; 477-491 0029-5981 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.6218 info:eu-repo/semantics/altIdentifier/doi/10.1002/nme.6218 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
John Wiley & Sons Ltd |
publisher.none.fl_str_mv |
John Wiley & Sons Ltd |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1843606558709121024 |
score |
13.001348 |