Using a History-Based Approach to Predict Topology Control Information in Mobile Ad Hoc Networks

Autores
Millán, Pere; Molina, Carlos; Meseguer, Roc; Ochoa, Sergio F.; Santos, Rodrigo Martin
Año de publicación
2014
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Several social computing participation strategies, such as crowdsensing and crowdsourcing, use mobile ad hoc or opportunistic networks to support the users activities. The unreliability and dynamism of these communication links make routing protocols a key component to achieve efficient and reliable data communication in physical environments. Often these routing capabilities come at expenses of flooding the network with a huge amount of topology control information (TCI), which can overload the communication links and dramatically increase the energy consumption of the participating devices. In previous works the authors have shown that predicting the network topology in these work scenarios helps reduce the number of control packets delivered through the network. This saves energy and increases the available bandwidth. This paper presents a study that extends the authors’ previous works, by identifying the impact of predicting the TCI generated by routing protocols in these networks. The prediction process is done following a history-based approach that uses information of the nodes past behavior. The paper also determines the predictability limits of this strategy, assuming that a TCI message can be correctly predicted if it appeared at least once in the past. The results show that the upper-bound limit of the history-based prediction approach is high, and that realistic prediction mechanisms can achieve significant ratios of accuracy. Mobile collaborative applications and routing protocols using mobile ad hoc or opportunistic networks can take advantage of this prediction approach to reduce network traffic, and consequently, the energy consumption of their devices.
Fil: Millán, Pere . Universitat Rovira i Virgili. Department of Computer Engineering; España
Fil: Molina, Carlos . Universitat Rovira I Virgili; España
Fil: Meseguer, Roc . Universidad Politecnica de Catalunya; España
Fil: Ochoa, Sergio F.. Universidad de Chile; Chile
Fil: Santos, Rodrigo Martin. Universidad Nacional del Sur. Departamento de Ingenieria Electrica y de Computadoras. Laboratorio de Sistemas Digitales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Bahía Blanca. Instituto de Investigación en Ingeniería Eléctrica; Argentina
Materia
Network Topology Prediction
History-Based Prediction
Routing Protocols
Mobile Ad Hoc Networks
Mobile Collaboration
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/11753

id CONICETDig_a94d942d0ba285bf030f2bac2d348135
oai_identifier_str oai:ri.conicet.gov.ar:11336/11753
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Using a History-Based Approach to Predict Topology Control Information in Mobile Ad Hoc NetworksMillán, Pere Molina, Carlos Meseguer, Roc Ochoa, Sergio F.Santos, Rodrigo MartinNetwork Topology PredictionHistory-Based PredictionRouting ProtocolsMobile Ad Hoc NetworksMobile Collaborationhttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1Several social computing participation strategies, such as crowdsensing and crowdsourcing, use mobile ad hoc or opportunistic networks to support the users activities. The unreliability and dynamism of these communication links make routing protocols a key component to achieve efficient and reliable data communication in physical environments. Often these routing capabilities come at expenses of flooding the network with a huge amount of topology control information (TCI), which can overload the communication links and dramatically increase the energy consumption of the participating devices. In previous works the authors have shown that predicting the network topology in these work scenarios helps reduce the number of control packets delivered through the network. This saves energy and increases the available bandwidth. This paper presents a study that extends the authors’ previous works, by identifying the impact of predicting the TCI generated by routing protocols in these networks. The prediction process is done following a history-based approach that uses information of the nodes past behavior. The paper also determines the predictability limits of this strategy, assuming that a TCI message can be correctly predicted if it appeared at least once in the past. The results show that the upper-bound limit of the history-based prediction approach is high, and that realistic prediction mechanisms can achieve significant ratios of accuracy. Mobile collaborative applications and routing protocols using mobile ad hoc or opportunistic networks can take advantage of this prediction approach to reduce network traffic, and consequently, the energy consumption of their devices.Fil: Millán, Pere . Universitat Rovira i Virgili. Department of Computer Engineering; EspañaFil: Molina, Carlos . Universitat Rovira I Virgili; EspañaFil: Meseguer, Roc . Universidad Politecnica de Catalunya; EspañaFil: Ochoa, Sergio F.. Universidad de Chile; ChileFil: Santos, Rodrigo Martin. Universidad Nacional del Sur. Departamento de Ingenieria Electrica y de Computadoras. Laboratorio de Sistemas Digitales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Bahía Blanca. Instituto de Investigación en Ingeniería Eléctrica; ArgentinaSpringer2014-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/11753Millán, Pere ; Molina, Carlos ; Meseguer, Roc ; Ochoa, Sergio F.; Santos, Rodrigo Martin; Using a History-Based Approach to Predict Topology Control Information in Mobile Ad Hoc Networks; Springer; Lecture Notes In Computer Science; 8729; 9-2014; 237-2490302-9743enginfo:eu-repo/semantics/altIdentifier/url/http://link.springer.com/chapter/10.1007/978-3-319-11692-1_21info:eu-repo/semantics/altIdentifier/url/http://dx.doi.org/10.1007/978-3-319-11692-1_21info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:00:11Zoai:ri.conicet.gov.ar:11336/11753instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:00:11.45CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Using a History-Based Approach to Predict Topology Control Information in Mobile Ad Hoc Networks
title Using a History-Based Approach to Predict Topology Control Information in Mobile Ad Hoc Networks
spellingShingle Using a History-Based Approach to Predict Topology Control Information in Mobile Ad Hoc Networks
Millán, Pere
Network Topology Prediction
History-Based Prediction
Routing Protocols
Mobile Ad Hoc Networks
Mobile Collaboration
title_short Using a History-Based Approach to Predict Topology Control Information in Mobile Ad Hoc Networks
title_full Using a History-Based Approach to Predict Topology Control Information in Mobile Ad Hoc Networks
title_fullStr Using a History-Based Approach to Predict Topology Control Information in Mobile Ad Hoc Networks
title_full_unstemmed Using a History-Based Approach to Predict Topology Control Information in Mobile Ad Hoc Networks
title_sort Using a History-Based Approach to Predict Topology Control Information in Mobile Ad Hoc Networks
dc.creator.none.fl_str_mv Millán, Pere
Molina, Carlos
Meseguer, Roc
Ochoa, Sergio F.
Santos, Rodrigo Martin
author Millán, Pere
author_facet Millán, Pere
Molina, Carlos
Meseguer, Roc
Ochoa, Sergio F.
Santos, Rodrigo Martin
author_role author
author2 Molina, Carlos
Meseguer, Roc
Ochoa, Sergio F.
Santos, Rodrigo Martin
author2_role author
author
author
author
dc.subject.none.fl_str_mv Network Topology Prediction
History-Based Prediction
Routing Protocols
Mobile Ad Hoc Networks
Mobile Collaboration
topic Network Topology Prediction
History-Based Prediction
Routing Protocols
Mobile Ad Hoc Networks
Mobile Collaboration
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.2
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Several social computing participation strategies, such as crowdsensing and crowdsourcing, use mobile ad hoc or opportunistic networks to support the users activities. The unreliability and dynamism of these communication links make routing protocols a key component to achieve efficient and reliable data communication in physical environments. Often these routing capabilities come at expenses of flooding the network with a huge amount of topology control information (TCI), which can overload the communication links and dramatically increase the energy consumption of the participating devices. In previous works the authors have shown that predicting the network topology in these work scenarios helps reduce the number of control packets delivered through the network. This saves energy and increases the available bandwidth. This paper presents a study that extends the authors’ previous works, by identifying the impact of predicting the TCI generated by routing protocols in these networks. The prediction process is done following a history-based approach that uses information of the nodes past behavior. The paper also determines the predictability limits of this strategy, assuming that a TCI message can be correctly predicted if it appeared at least once in the past. The results show that the upper-bound limit of the history-based prediction approach is high, and that realistic prediction mechanisms can achieve significant ratios of accuracy. Mobile collaborative applications and routing protocols using mobile ad hoc or opportunistic networks can take advantage of this prediction approach to reduce network traffic, and consequently, the energy consumption of their devices.
Fil: Millán, Pere . Universitat Rovira i Virgili. Department of Computer Engineering; España
Fil: Molina, Carlos . Universitat Rovira I Virgili; España
Fil: Meseguer, Roc . Universidad Politecnica de Catalunya; España
Fil: Ochoa, Sergio F.. Universidad de Chile; Chile
Fil: Santos, Rodrigo Martin. Universidad Nacional del Sur. Departamento de Ingenieria Electrica y de Computadoras. Laboratorio de Sistemas Digitales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Bahía Blanca. Instituto de Investigación en Ingeniería Eléctrica; Argentina
description Several social computing participation strategies, such as crowdsensing and crowdsourcing, use mobile ad hoc or opportunistic networks to support the users activities. The unreliability and dynamism of these communication links make routing protocols a key component to achieve efficient and reliable data communication in physical environments. Often these routing capabilities come at expenses of flooding the network with a huge amount of topology control information (TCI), which can overload the communication links and dramatically increase the energy consumption of the participating devices. In previous works the authors have shown that predicting the network topology in these work scenarios helps reduce the number of control packets delivered through the network. This saves energy and increases the available bandwidth. This paper presents a study that extends the authors’ previous works, by identifying the impact of predicting the TCI generated by routing protocols in these networks. The prediction process is done following a history-based approach that uses information of the nodes past behavior. The paper also determines the predictability limits of this strategy, assuming that a TCI message can be correctly predicted if it appeared at least once in the past. The results show that the upper-bound limit of the history-based prediction approach is high, and that realistic prediction mechanisms can achieve significant ratios of accuracy. Mobile collaborative applications and routing protocols using mobile ad hoc or opportunistic networks can take advantage of this prediction approach to reduce network traffic, and consequently, the energy consumption of their devices.
publishDate 2014
dc.date.none.fl_str_mv 2014-09
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/11753
Millán, Pere ; Molina, Carlos ; Meseguer, Roc ; Ochoa, Sergio F.; Santos, Rodrigo Martin; Using a History-Based Approach to Predict Topology Control Information in Mobile Ad Hoc Networks; Springer; Lecture Notes In Computer Science; 8729; 9-2014; 237-249
0302-9743
url http://hdl.handle.net/11336/11753
identifier_str_mv Millán, Pere ; Molina, Carlos ; Meseguer, Roc ; Ochoa, Sergio F.; Santos, Rodrigo Martin; Using a History-Based Approach to Predict Topology Control Information in Mobile Ad Hoc Networks; Springer; Lecture Notes In Computer Science; 8729; 9-2014; 237-249
0302-9743
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://link.springer.com/chapter/10.1007/978-3-319-11692-1_21
info:eu-repo/semantics/altIdentifier/url/http://dx.doi.org/10.1007/978-3-319-11692-1_21
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269624215797760
score 13.13397