A note on the path integral representation for Majorana fermions

Autores
Greco, Andres Francisco
Año de publicación
2016
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Majorana fermions are currently of huge interest in the context of nanoscience and condensed matter physics. Different to usual fermions, Majorana fermions have the property that the particle is its own anti-particle thus, they must be described by real fields. Mathematically, this property makes nontrivial the quantization of the problem due, for instance, to the absence of a Wick-like theorem. In view of the present interest on the subject, it is important to develop different theoretical approaches in order to study problems where Majorana fermions are involved. In this note we show that Majorana fermions can be studied in the context of field theories for constrained systems. Using the Faddeev-Jackiw formalism for quantum field theories with constraints, we derived the path integral representation for Majorana fermions. In order to show the validity of the path integral we apply it to an exactly solvable problem. This application also shows that it is rather simple to perform systematic calculations on the basis of the present framework.
Fil: Greco, Andres Francisco. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Física de Rosario. Universidad Nacional de Rosario. Instituto de Física de Rosario; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; Argentina
Materia
FADDEEVJACKIW QUANTIZATION
MAJORANA FERMIONS
PATH INTEGRAL
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/52717

id CONICETDig_a89a5adbc32baed571b4647062638c49
oai_identifier_str oai:ri.conicet.gov.ar:11336/52717
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling A note on the path integral representation for Majorana fermionsGreco, Andres FranciscoFADDEEVJACKIW QUANTIZATIONMAJORANA FERMIONSPATH INTEGRALhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Majorana fermions are currently of huge interest in the context of nanoscience and condensed matter physics. Different to usual fermions, Majorana fermions have the property that the particle is its own anti-particle thus, they must be described by real fields. Mathematically, this property makes nontrivial the quantization of the problem due, for instance, to the absence of a Wick-like theorem. In view of the present interest on the subject, it is important to develop different theoretical approaches in order to study problems where Majorana fermions are involved. In this note we show that Majorana fermions can be studied in the context of field theories for constrained systems. Using the Faddeev-Jackiw formalism for quantum field theories with constraints, we derived the path integral representation for Majorana fermions. In order to show the validity of the path integral we apply it to an exactly solvable problem. This application also shows that it is rather simple to perform systematic calculations on the basis of the present framework.Fil: Greco, Andres Francisco. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Física de Rosario. Universidad Nacional de Rosario. Instituto de Física de Rosario; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; ArgentinaIOP Publishing2016-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/52717Greco, Andres Francisco; A note on the path integral representation for Majorana fermions; IOP Publishing; Journal of Physics A: Mathematical and Theoretical; 49; 15; 3-2016; 155004-1550101751-8113CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1088/1751-8113/49/15/155004info:eu-repo/semantics/altIdentifier/url/http://iopscience.iop.org/article/10.1088/1751-8113/49/15/155004/metainfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:16:47Zoai:ri.conicet.gov.ar:11336/52717instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:16:47.958CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv A note on the path integral representation for Majorana fermions
title A note on the path integral representation for Majorana fermions
spellingShingle A note on the path integral representation for Majorana fermions
Greco, Andres Francisco
FADDEEVJACKIW QUANTIZATION
MAJORANA FERMIONS
PATH INTEGRAL
title_short A note on the path integral representation for Majorana fermions
title_full A note on the path integral representation for Majorana fermions
title_fullStr A note on the path integral representation for Majorana fermions
title_full_unstemmed A note on the path integral representation for Majorana fermions
title_sort A note on the path integral representation for Majorana fermions
dc.creator.none.fl_str_mv Greco, Andres Francisco
author Greco, Andres Francisco
author_facet Greco, Andres Francisco
author_role author
dc.subject.none.fl_str_mv FADDEEVJACKIW QUANTIZATION
MAJORANA FERMIONS
PATH INTEGRAL
topic FADDEEVJACKIW QUANTIZATION
MAJORANA FERMIONS
PATH INTEGRAL
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Majorana fermions are currently of huge interest in the context of nanoscience and condensed matter physics. Different to usual fermions, Majorana fermions have the property that the particle is its own anti-particle thus, they must be described by real fields. Mathematically, this property makes nontrivial the quantization of the problem due, for instance, to the absence of a Wick-like theorem. In view of the present interest on the subject, it is important to develop different theoretical approaches in order to study problems where Majorana fermions are involved. In this note we show that Majorana fermions can be studied in the context of field theories for constrained systems. Using the Faddeev-Jackiw formalism for quantum field theories with constraints, we derived the path integral representation for Majorana fermions. In order to show the validity of the path integral we apply it to an exactly solvable problem. This application also shows that it is rather simple to perform systematic calculations on the basis of the present framework.
Fil: Greco, Andres Francisco. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Física de Rosario. Universidad Nacional de Rosario. Instituto de Física de Rosario; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; Argentina
description Majorana fermions are currently of huge interest in the context of nanoscience and condensed matter physics. Different to usual fermions, Majorana fermions have the property that the particle is its own anti-particle thus, they must be described by real fields. Mathematically, this property makes nontrivial the quantization of the problem due, for instance, to the absence of a Wick-like theorem. In view of the present interest on the subject, it is important to develop different theoretical approaches in order to study problems where Majorana fermions are involved. In this note we show that Majorana fermions can be studied in the context of field theories for constrained systems. Using the Faddeev-Jackiw formalism for quantum field theories with constraints, we derived the path integral representation for Majorana fermions. In order to show the validity of the path integral we apply it to an exactly solvable problem. This application also shows that it is rather simple to perform systematic calculations on the basis of the present framework.
publishDate 2016
dc.date.none.fl_str_mv 2016-03
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/52717
Greco, Andres Francisco; A note on the path integral representation for Majorana fermions; IOP Publishing; Journal of Physics A: Mathematical and Theoretical; 49; 15; 3-2016; 155004-155010
1751-8113
CONICET Digital
CONICET
url http://hdl.handle.net/11336/52717
identifier_str_mv Greco, Andres Francisco; A note on the path integral representation for Majorana fermions; IOP Publishing; Journal of Physics A: Mathematical and Theoretical; 49; 15; 3-2016; 155004-155010
1751-8113
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1088/1751-8113/49/15/155004
info:eu-repo/semantics/altIdentifier/url/http://iopscience.iop.org/article/10.1088/1751-8113/49/15/155004/meta
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv IOP Publishing
publisher.none.fl_str_mv IOP Publishing
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614115534831616
score 13.070432