Simple models for macro-parasite distributions in hosts
- Autores
- López, Gonzalo Maximiliano; Aparicio, Juan Pablo
- Año de publicación
- 2022
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Negative binomial distribution is the most used distribution to model macro-parasite burden in hosts. However reliable maximum likelihood parameter estimation from data is far from trivial. No closed formula is available and numerical estimation requires sophisticated methods. Using data from the literature we show that simple alternatives to negative binomial, like zero-inflated geometric or hurdle geometric distributions, produce a good and even better fit to data than negative binomial distribution. We derived closed simple formulas for the maximum likelihood parameter estimation which constitutes a significant advantage of these distributions over negative binomial distribution.
Fil: López, Gonzalo Maximiliano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Investigaciones en Energía no Convencional. Universidad Nacional de Salta. Facultad de Ciencias Exactas. Departamento de Física. Instituto de Investigaciones en Energía no Convencional; Argentina
Fil: Aparicio, Juan Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Investigaciones en Energía no Convencional. Universidad Nacional de Salta. Facultad de Ciencias Exactas. Departamento de Física. Instituto de Investigaciones en Energía no Convencional; Argentina - Materia
-
Hurdle geometric distribution
Macroparasite
Maximum likelihood estimation
Zero-inflated geometric distribution - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/203554
Ver los metadatos del registro completo
id |
CONICETDig_a8574499d4287c8df79972927755f785 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/203554 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Simple models for macro-parasite distributions in hostsLópez, Gonzalo MaximilianoAparicio, Juan PabloHurdle geometric distributionMacroparasiteMaximum likelihood estimationZero-inflated geometric distributionhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Negative binomial distribution is the most used distribution to model macro-parasite burden in hosts. However reliable maximum likelihood parameter estimation from data is far from trivial. No closed formula is available and numerical estimation requires sophisticated methods. Using data from the literature we show that simple alternatives to negative binomial, like zero-inflated geometric or hurdle geometric distributions, produce a good and even better fit to data than negative binomial distribution. We derived closed simple formulas for the maximum likelihood parameter estimation which constitutes a significant advantage of these distributions over negative binomial distribution.Fil: López, Gonzalo Maximiliano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Investigaciones en Energía no Convencional. Universidad Nacional de Salta. Facultad de Ciencias Exactas. Departamento de Física. Instituto de Investigaciones en Energía no Convencional; ArgentinaFil: Aparicio, Juan Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Investigaciones en Energía no Convencional. Universidad Nacional de Salta. Facultad de Ciencias Exactas. Departamento de Física. Instituto de Investigaciones en Energía no Convencional; ArgentinaCornell University2022-02-23info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/203554López, Gonzalo Maximiliano; Aparicio, Juan Pablo; Simple models for macro-parasite distributions in hosts; Cornell University; arXiv.org; 2022; 23-2-2022; 1-162331-8422CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://arxiv.org/abs/2202.11282info:eu-repo/semantics/altIdentifier/doi/10.48550/arXiv.2202.11282info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:23:32Zoai:ri.conicet.gov.ar:11336/203554instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:23:32.538CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Simple models for macro-parasite distributions in hosts |
title |
Simple models for macro-parasite distributions in hosts |
spellingShingle |
Simple models for macro-parasite distributions in hosts López, Gonzalo Maximiliano Hurdle geometric distribution Macroparasite Maximum likelihood estimation Zero-inflated geometric distribution |
title_short |
Simple models for macro-parasite distributions in hosts |
title_full |
Simple models for macro-parasite distributions in hosts |
title_fullStr |
Simple models for macro-parasite distributions in hosts |
title_full_unstemmed |
Simple models for macro-parasite distributions in hosts |
title_sort |
Simple models for macro-parasite distributions in hosts |
dc.creator.none.fl_str_mv |
López, Gonzalo Maximiliano Aparicio, Juan Pablo |
author |
López, Gonzalo Maximiliano |
author_facet |
López, Gonzalo Maximiliano Aparicio, Juan Pablo |
author_role |
author |
author2 |
Aparicio, Juan Pablo |
author2_role |
author |
dc.subject.none.fl_str_mv |
Hurdle geometric distribution Macroparasite Maximum likelihood estimation Zero-inflated geometric distribution |
topic |
Hurdle geometric distribution Macroparasite Maximum likelihood estimation Zero-inflated geometric distribution |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Negative binomial distribution is the most used distribution to model macro-parasite burden in hosts. However reliable maximum likelihood parameter estimation from data is far from trivial. No closed formula is available and numerical estimation requires sophisticated methods. Using data from the literature we show that simple alternatives to negative binomial, like zero-inflated geometric or hurdle geometric distributions, produce a good and even better fit to data than negative binomial distribution. We derived closed simple formulas for the maximum likelihood parameter estimation which constitutes a significant advantage of these distributions over negative binomial distribution. Fil: López, Gonzalo Maximiliano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Investigaciones en Energía no Convencional. Universidad Nacional de Salta. Facultad de Ciencias Exactas. Departamento de Física. Instituto de Investigaciones en Energía no Convencional; Argentina Fil: Aparicio, Juan Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Investigaciones en Energía no Convencional. Universidad Nacional de Salta. Facultad de Ciencias Exactas. Departamento de Física. Instituto de Investigaciones en Energía no Convencional; Argentina |
description |
Negative binomial distribution is the most used distribution to model macro-parasite burden in hosts. However reliable maximum likelihood parameter estimation from data is far from trivial. No closed formula is available and numerical estimation requires sophisticated methods. Using data from the literature we show that simple alternatives to negative binomial, like zero-inflated geometric or hurdle geometric distributions, produce a good and even better fit to data than negative binomial distribution. We derived closed simple formulas for the maximum likelihood parameter estimation which constitutes a significant advantage of these distributions over negative binomial distribution. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-02-23 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/203554 López, Gonzalo Maximiliano; Aparicio, Juan Pablo; Simple models for macro-parasite distributions in hosts; Cornell University; arXiv.org; 2022; 23-2-2022; 1-16 2331-8422 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/203554 |
identifier_str_mv |
López, Gonzalo Maximiliano; Aparicio, Juan Pablo; Simple models for macro-parasite distributions in hosts; Cornell University; arXiv.org; 2022; 23-2-2022; 1-16 2331-8422 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://arxiv.org/abs/2202.11282 info:eu-repo/semantics/altIdentifier/doi/10.48550/arXiv.2202.11282 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Cornell University |
publisher.none.fl_str_mv |
Cornell University |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846083382438526976 |
score |
13.221938 |