A Real-Time Time-Dependent Density Functional Tight-Binding Implementation for Semiclassical Excited State Electron-Nuclear Dynamics and Pump-Probe Spectroscopy Simulations

Autores
Bonafé, Franco Paúl; Aradi, Bálint; Hourahine, Ben; Medrano, Carlos Raúl; Hernández, Federico Javier; Frauenheim, Thomas; Sanchez, Cristian Gabriel
Año de publicación
2020
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The increasing need to simulate the dynamics of photoexcited molecular systems and nanosystems in the subpicosecond regime demands new efficient tools able to describe the quantum nature of matter at a low computational cost. By combining the power of the approximate DFTB method with the semiclassical Ehrenfest method for nuclear-electron dynamics, we have achieved a real-time time-dependent DFTB (TD-DFTB) implementation that fits such requirements. In addition to enabling the study of nuclear motion effects in photoinduced charge transfer processes, our code adds novel features to the realm of static and time-resolved computational spectroscopies. In particular, the optical properties of periodic materials such as graphene nanoribbons or the use of corrections such as the "LDA+U"and "pseudo SIC"methods to improve the optical properties in some systems can now be handled at the TD-DFTB level. Moreover, the simulation of fully atomistic time-resolved transient absorption spectra and impulsive vibrational spectra can now be achieved within reasonable computing time, owing to the good performance of the implementation and a parallel simulation protocol. Its application to the study of UV/visible light-induced vibrational coherences in molecules is demonstrated and opens a new door into the mechanisms of nonequilibrium ultrafast phenomena in countless materials with relevant applications.
Fil: Bonafé, Franco Paúl. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; Argentina
Fil: Aradi, Bálint. Universitat Bremen; Alemania
Fil: Hourahine, Ben. University of Strathclyde; Reino Unido
Fil: Medrano, Carlos Raúl. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; Argentina
Fil: Hernández, Federico Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; Argentina
Fil: Frauenheim, Thomas. Universitat Bremen; Alemania
Fil: Sanchez, Cristian Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Interdisciplinario de Ciencias Básicas. - Universidad Nacional de Cuyo. Instituto Interdisciplinario de Ciencias Básicas; Argentina
Materia
TD-DFTB
electron ion dynamics
simulation
pump probe spectroscopy
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/143795

id CONICETDig_a8475f609e424472b3c1e16b8e5328ce
oai_identifier_str oai:ri.conicet.gov.ar:11336/143795
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling A Real-Time Time-Dependent Density Functional Tight-Binding Implementation for Semiclassical Excited State Electron-Nuclear Dynamics and Pump-Probe Spectroscopy SimulationsBonafé, Franco PaúlAradi, BálintHourahine, BenMedrano, Carlos RaúlHernández, Federico JavierFrauenheim, ThomasSanchez, Cristian GabrielTD-DFTBelectron ion dynamicssimulationpump probe spectroscopyhttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1The increasing need to simulate the dynamics of photoexcited molecular systems and nanosystems in the subpicosecond regime demands new efficient tools able to describe the quantum nature of matter at a low computational cost. By combining the power of the approximate DFTB method with the semiclassical Ehrenfest method for nuclear-electron dynamics, we have achieved a real-time time-dependent DFTB (TD-DFTB) implementation that fits such requirements. In addition to enabling the study of nuclear motion effects in photoinduced charge transfer processes, our code adds novel features to the realm of static and time-resolved computational spectroscopies. In particular, the optical properties of periodic materials such as graphene nanoribbons or the use of corrections such as the "LDA+U"and "pseudo SIC"methods to improve the optical properties in some systems can now be handled at the TD-DFTB level. Moreover, the simulation of fully atomistic time-resolved transient absorption spectra and impulsive vibrational spectra can now be achieved within reasonable computing time, owing to the good performance of the implementation and a parallel simulation protocol. Its application to the study of UV/visible light-induced vibrational coherences in molecules is demonstrated and opens a new door into the mechanisms of nonequilibrium ultrafast phenomena in countless materials with relevant applications.Fil: Bonafé, Franco Paúl. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; ArgentinaFil: Aradi, Bálint. Universitat Bremen; AlemaniaFil: Hourahine, Ben. University of Strathclyde; Reino UnidoFil: Medrano, Carlos Raúl. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; ArgentinaFil: Hernández, Federico Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; ArgentinaFil: Frauenheim, Thomas. Universitat Bremen; AlemaniaFil: Sanchez, Cristian Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Interdisciplinario de Ciencias Básicas. - Universidad Nacional de Cuyo. Instituto Interdisciplinario de Ciencias Básicas; ArgentinaAmerican Chemical Society2020-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/143795Bonafé, Franco Paúl; Aradi, Bálint; Hourahine, Ben; Medrano, Carlos Raúl; Hernández, Federico Javier; et al.; A Real-Time Time-Dependent Density Functional Tight-Binding Implementation for Semiclassical Excited State Electron-Nuclear Dynamics and Pump-Probe Spectroscopy Simulations; American Chemical Society; Journal of Chemical Theory and Computation; 16; 7; 7-2020; 4454-44691549-9618CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1021/acs.jctc.9b01217info:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/10.1021/acs.jctc.9b01217info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:32:48Zoai:ri.conicet.gov.ar:11336/143795instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:32:48.598CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv A Real-Time Time-Dependent Density Functional Tight-Binding Implementation for Semiclassical Excited State Electron-Nuclear Dynamics and Pump-Probe Spectroscopy Simulations
title A Real-Time Time-Dependent Density Functional Tight-Binding Implementation for Semiclassical Excited State Electron-Nuclear Dynamics and Pump-Probe Spectroscopy Simulations
spellingShingle A Real-Time Time-Dependent Density Functional Tight-Binding Implementation for Semiclassical Excited State Electron-Nuclear Dynamics and Pump-Probe Spectroscopy Simulations
Bonafé, Franco Paúl
TD-DFTB
electron ion dynamics
simulation
pump probe spectroscopy
title_short A Real-Time Time-Dependent Density Functional Tight-Binding Implementation for Semiclassical Excited State Electron-Nuclear Dynamics and Pump-Probe Spectroscopy Simulations
title_full A Real-Time Time-Dependent Density Functional Tight-Binding Implementation for Semiclassical Excited State Electron-Nuclear Dynamics and Pump-Probe Spectroscopy Simulations
title_fullStr A Real-Time Time-Dependent Density Functional Tight-Binding Implementation for Semiclassical Excited State Electron-Nuclear Dynamics and Pump-Probe Spectroscopy Simulations
title_full_unstemmed A Real-Time Time-Dependent Density Functional Tight-Binding Implementation for Semiclassical Excited State Electron-Nuclear Dynamics and Pump-Probe Spectroscopy Simulations
title_sort A Real-Time Time-Dependent Density Functional Tight-Binding Implementation for Semiclassical Excited State Electron-Nuclear Dynamics and Pump-Probe Spectroscopy Simulations
dc.creator.none.fl_str_mv Bonafé, Franco Paúl
Aradi, Bálint
Hourahine, Ben
Medrano, Carlos Raúl
Hernández, Federico Javier
Frauenheim, Thomas
Sanchez, Cristian Gabriel
author Bonafé, Franco Paúl
author_facet Bonafé, Franco Paúl
Aradi, Bálint
Hourahine, Ben
Medrano, Carlos Raúl
Hernández, Federico Javier
Frauenheim, Thomas
Sanchez, Cristian Gabriel
author_role author
author2 Aradi, Bálint
Hourahine, Ben
Medrano, Carlos Raúl
Hernández, Federico Javier
Frauenheim, Thomas
Sanchez, Cristian Gabriel
author2_role author
author
author
author
author
author
dc.subject.none.fl_str_mv TD-DFTB
electron ion dynamics
simulation
pump probe spectroscopy
topic TD-DFTB
electron ion dynamics
simulation
pump probe spectroscopy
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.4
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv The increasing need to simulate the dynamics of photoexcited molecular systems and nanosystems in the subpicosecond regime demands new efficient tools able to describe the quantum nature of matter at a low computational cost. By combining the power of the approximate DFTB method with the semiclassical Ehrenfest method for nuclear-electron dynamics, we have achieved a real-time time-dependent DFTB (TD-DFTB) implementation that fits such requirements. In addition to enabling the study of nuclear motion effects in photoinduced charge transfer processes, our code adds novel features to the realm of static and time-resolved computational spectroscopies. In particular, the optical properties of periodic materials such as graphene nanoribbons or the use of corrections such as the "LDA+U"and "pseudo SIC"methods to improve the optical properties in some systems can now be handled at the TD-DFTB level. Moreover, the simulation of fully atomistic time-resolved transient absorption spectra and impulsive vibrational spectra can now be achieved within reasonable computing time, owing to the good performance of the implementation and a parallel simulation protocol. Its application to the study of UV/visible light-induced vibrational coherences in molecules is demonstrated and opens a new door into the mechanisms of nonequilibrium ultrafast phenomena in countless materials with relevant applications.
Fil: Bonafé, Franco Paúl. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; Argentina
Fil: Aradi, Bálint. Universitat Bremen; Alemania
Fil: Hourahine, Ben. University of Strathclyde; Reino Unido
Fil: Medrano, Carlos Raúl. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; Argentina
Fil: Hernández, Federico Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; Argentina
Fil: Frauenheim, Thomas. Universitat Bremen; Alemania
Fil: Sanchez, Cristian Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Interdisciplinario de Ciencias Básicas. - Universidad Nacional de Cuyo. Instituto Interdisciplinario de Ciencias Básicas; Argentina
description The increasing need to simulate the dynamics of photoexcited molecular systems and nanosystems in the subpicosecond regime demands new efficient tools able to describe the quantum nature of matter at a low computational cost. By combining the power of the approximate DFTB method with the semiclassical Ehrenfest method for nuclear-electron dynamics, we have achieved a real-time time-dependent DFTB (TD-DFTB) implementation that fits such requirements. In addition to enabling the study of nuclear motion effects in photoinduced charge transfer processes, our code adds novel features to the realm of static and time-resolved computational spectroscopies. In particular, the optical properties of periodic materials such as graphene nanoribbons or the use of corrections such as the "LDA+U"and "pseudo SIC"methods to improve the optical properties in some systems can now be handled at the TD-DFTB level. Moreover, the simulation of fully atomistic time-resolved transient absorption spectra and impulsive vibrational spectra can now be achieved within reasonable computing time, owing to the good performance of the implementation and a parallel simulation protocol. Its application to the study of UV/visible light-induced vibrational coherences in molecules is demonstrated and opens a new door into the mechanisms of nonequilibrium ultrafast phenomena in countless materials with relevant applications.
publishDate 2020
dc.date.none.fl_str_mv 2020-07
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/143795
Bonafé, Franco Paúl; Aradi, Bálint; Hourahine, Ben; Medrano, Carlos Raúl; Hernández, Federico Javier; et al.; A Real-Time Time-Dependent Density Functional Tight-Binding Implementation for Semiclassical Excited State Electron-Nuclear Dynamics and Pump-Probe Spectroscopy Simulations; American Chemical Society; Journal of Chemical Theory and Computation; 16; 7; 7-2020; 4454-4469
1549-9618
CONICET Digital
CONICET
url http://hdl.handle.net/11336/143795
identifier_str_mv Bonafé, Franco Paúl; Aradi, Bálint; Hourahine, Ben; Medrano, Carlos Raúl; Hernández, Federico Javier; et al.; A Real-Time Time-Dependent Density Functional Tight-Binding Implementation for Semiclassical Excited State Electron-Nuclear Dynamics and Pump-Probe Spectroscopy Simulations; American Chemical Society; Journal of Chemical Theory and Computation; 16; 7; 7-2020; 4454-4469
1549-9618
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1021/acs.jctc.9b01217
info:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/10.1021/acs.jctc.9b01217
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Chemical Society
publisher.none.fl_str_mv American Chemical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614342598721536
score 13.070432