Routing in waste collection: a simulated annealing algorithm for an Argentinean case study
- Autores
- Rossit, Diego Gabriel; Toncovich, Adrián Andrés; Fermani, Matías
- Año de publicación
- 2021
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The management of the collection of Municipal Solid Waste is a complex task for local governments since it consumes a large portion of their budgets. Thus, the use of computer-aided tools to support decision-making can contribute to improve the efficiency of the system and reduce the associated costs, especially in developing countries, which usually suffer from a shortage of resources. In the present work, a simulated annealing algorithm is proposed to address the problem of designing the routes of waste collection vehicles. The proposed algorithm is compared to a commercial solver based on a mixed-integer programming formulation and two other metaheuristic algorithms, i.e., a state-of-the-art large neighborhood search and a genetic algorithm. The evaluation is carried out on both a well-known benchmark from the literature and real instances of the Argentinean city of Bahía Blanca. The proposed algorithm was able to solve all the instances, having a performance similar to the large neighborhood procedure, while the genetic algorithm showed the worst results. The simulated annealing algorithm was also able to improve the solutions of the solver in many instances of the real dataset.
Fil: Rossit, Diego Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Ingeniería; Argentina
Fil: Toncovich, Adrián Andrés. Universidad Nacional del Sur. Departamento de Ingeniería; Argentina
Fil: Fermani, Matías. Universidad Nacional del Sur. Departamento de Ingeniería; Argentina - Materia
-
MUNICIPAL SOLID WASTE
WASTE COLLECTION
VEHICLE ROUTING PROBLEM
SIMULATED ANNEALING
MIXED-INTEGER PROGRAMMING
LARGE NEIGHBORHOOD SEARCH
GENETIC ALGORITHM - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/151767
Ver los metadatos del registro completo
id |
CONICETDig_a825bd29f7b9d3a2825ccb42f0d90a1b |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/151767 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Routing in waste collection: a simulated annealing algorithm for an Argentinean case studyRossit, Diego GabrielToncovich, Adrián AndrésFermani, MatíasMUNICIPAL SOLID WASTEWASTE COLLECTIONVEHICLE ROUTING PROBLEMSIMULATED ANNEALINGMIXED-INTEGER PROGRAMMINGLARGE NEIGHBORHOOD SEARCHGENETIC ALGORITHMhttps://purl.org/becyt/ford/2.11https://purl.org/becyt/ford/2The management of the collection of Municipal Solid Waste is a complex task for local governments since it consumes a large portion of their budgets. Thus, the use of computer-aided tools to support decision-making can contribute to improve the efficiency of the system and reduce the associated costs, especially in developing countries, which usually suffer from a shortage of resources. In the present work, a simulated annealing algorithm is proposed to address the problem of designing the routes of waste collection vehicles. The proposed algorithm is compared to a commercial solver based on a mixed-integer programming formulation and two other metaheuristic algorithms, i.e., a state-of-the-art large neighborhood search and a genetic algorithm. The evaluation is carried out on both a well-known benchmark from the literature and real instances of the Argentinean city of Bahía Blanca. The proposed algorithm was able to solve all the instances, having a performance similar to the large neighborhood procedure, while the genetic algorithm showed the worst results. The simulated annealing algorithm was also able to improve the solutions of the solver in many instances of the real dataset.Fil: Rossit, Diego Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Ingeniería; ArgentinaFil: Toncovich, Adrián Andrés. Universidad Nacional del Sur. Departamento de Ingeniería; ArgentinaFil: Fermani, Matías. Universidad Nacional del Sur. Departamento de Ingeniería; ArgentinaAmerican Institute of Mathematical Sciences2021-11-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/151767Rossit, Diego Gabriel; Toncovich, Adrián Andrés; Fermani, Matías; Routing in waste collection: a simulated annealing algorithm for an Argentinean case study; American Institute of Mathematical Sciences; Mathematical Biosciences And Engineering; 18; 6; 03-11-2021; 9579-96051547-10631551-0018CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.aimspress.com/article/doi/10.3934/mbe.2021470info:eu-repo/semantics/altIdentifier/doi/10.3934/mbe.2021470info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:00:26Zoai:ri.conicet.gov.ar:11336/151767instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:00:26.461CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Routing in waste collection: a simulated annealing algorithm for an Argentinean case study |
title |
Routing in waste collection: a simulated annealing algorithm for an Argentinean case study |
spellingShingle |
Routing in waste collection: a simulated annealing algorithm for an Argentinean case study Rossit, Diego Gabriel MUNICIPAL SOLID WASTE WASTE COLLECTION VEHICLE ROUTING PROBLEM SIMULATED ANNEALING MIXED-INTEGER PROGRAMMING LARGE NEIGHBORHOOD SEARCH GENETIC ALGORITHM |
title_short |
Routing in waste collection: a simulated annealing algorithm for an Argentinean case study |
title_full |
Routing in waste collection: a simulated annealing algorithm for an Argentinean case study |
title_fullStr |
Routing in waste collection: a simulated annealing algorithm for an Argentinean case study |
title_full_unstemmed |
Routing in waste collection: a simulated annealing algorithm for an Argentinean case study |
title_sort |
Routing in waste collection: a simulated annealing algorithm for an Argentinean case study |
dc.creator.none.fl_str_mv |
Rossit, Diego Gabriel Toncovich, Adrián Andrés Fermani, Matías |
author |
Rossit, Diego Gabriel |
author_facet |
Rossit, Diego Gabriel Toncovich, Adrián Andrés Fermani, Matías |
author_role |
author |
author2 |
Toncovich, Adrián Andrés Fermani, Matías |
author2_role |
author author |
dc.subject.none.fl_str_mv |
MUNICIPAL SOLID WASTE WASTE COLLECTION VEHICLE ROUTING PROBLEM SIMULATED ANNEALING MIXED-INTEGER PROGRAMMING LARGE NEIGHBORHOOD SEARCH GENETIC ALGORITHM |
topic |
MUNICIPAL SOLID WASTE WASTE COLLECTION VEHICLE ROUTING PROBLEM SIMULATED ANNEALING MIXED-INTEGER PROGRAMMING LARGE NEIGHBORHOOD SEARCH GENETIC ALGORITHM |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.11 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
The management of the collection of Municipal Solid Waste is a complex task for local governments since it consumes a large portion of their budgets. Thus, the use of computer-aided tools to support decision-making can contribute to improve the efficiency of the system and reduce the associated costs, especially in developing countries, which usually suffer from a shortage of resources. In the present work, a simulated annealing algorithm is proposed to address the problem of designing the routes of waste collection vehicles. The proposed algorithm is compared to a commercial solver based on a mixed-integer programming formulation and two other metaheuristic algorithms, i.e., a state-of-the-art large neighborhood search and a genetic algorithm. The evaluation is carried out on both a well-known benchmark from the literature and real instances of the Argentinean city of Bahía Blanca. The proposed algorithm was able to solve all the instances, having a performance similar to the large neighborhood procedure, while the genetic algorithm showed the worst results. The simulated annealing algorithm was also able to improve the solutions of the solver in many instances of the real dataset. Fil: Rossit, Diego Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Ingeniería; Argentina Fil: Toncovich, Adrián Andrés. Universidad Nacional del Sur. Departamento de Ingeniería; Argentina Fil: Fermani, Matías. Universidad Nacional del Sur. Departamento de Ingeniería; Argentina |
description |
The management of the collection of Municipal Solid Waste is a complex task for local governments since it consumes a large portion of their budgets. Thus, the use of computer-aided tools to support decision-making can contribute to improve the efficiency of the system and reduce the associated costs, especially in developing countries, which usually suffer from a shortage of resources. In the present work, a simulated annealing algorithm is proposed to address the problem of designing the routes of waste collection vehicles. The proposed algorithm is compared to a commercial solver based on a mixed-integer programming formulation and two other metaheuristic algorithms, i.e., a state-of-the-art large neighborhood search and a genetic algorithm. The evaluation is carried out on both a well-known benchmark from the literature and real instances of the Argentinean city of Bahía Blanca. The proposed algorithm was able to solve all the instances, having a performance similar to the large neighborhood procedure, while the genetic algorithm showed the worst results. The simulated annealing algorithm was also able to improve the solutions of the solver in many instances of the real dataset. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-11-03 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/151767 Rossit, Diego Gabriel; Toncovich, Adrián Andrés; Fermani, Matías; Routing in waste collection: a simulated annealing algorithm for an Argentinean case study; American Institute of Mathematical Sciences; Mathematical Biosciences And Engineering; 18; 6; 03-11-2021; 9579-9605 1547-1063 1551-0018 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/151767 |
identifier_str_mv |
Rossit, Diego Gabriel; Toncovich, Adrián Andrés; Fermani, Matías; Routing in waste collection: a simulated annealing algorithm for an Argentinean case study; American Institute of Mathematical Sciences; Mathematical Biosciences And Engineering; 18; 6; 03-11-2021; 9579-9605 1547-1063 1551-0018 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.aimspress.com/article/doi/10.3934/mbe.2021470 info:eu-repo/semantics/altIdentifier/doi/10.3934/mbe.2021470 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Institute of Mathematical Sciences |
publisher.none.fl_str_mv |
American Institute of Mathematical Sciences |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269637922783232 |
score |
13.13397 |