Numerical methods for nanoscopic systems based on density matrix renormalization
- Autores
- Hallberg, Karen Astrid
- Año de publicación
- 2008
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The Density Matrix Renormalization Group (DMRG) has become a powerful numerical method that can be applied to nanoscopic and low-dimensional strongly correlated fermionic and bosonic systems. It allows for a very precise calculation of static, dynamic and thermodynamic properties. Its field of applicability has now extended beyond Condensed Matter, and is successfully used in Quantum Chemistry, Statistical Mechanics, Quantum Information Theory, Nuclear and High Energy Physics as well. In this article, we briefly review the main aspects of the method and present some of the most relevant applications. The recent quantum information interpretation, the development of highly accurate time-dependent algorithms and the possibility of using the DMRG as the impurity-solver of the Dynamical Mean Field Method (DMFT) give new insights into its present and potential uses. We review the numerous very recent applications of these techniques whe the DMRG has shown to be one of the most reliable and versatile methods in modern computational physics.
Fil: Hallberg, Karen Astrid. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina - Materia
-
Density Matrix Renormalization
Low-Dimensional Systems
Numerical Methods
Quantum Information
Strongly Correlated Electrons - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/70018
Ver los metadatos del registro completo
id |
CONICETDig_a6bd49df193f9812b4c548bf124f5c81 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/70018 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Numerical methods for nanoscopic systems based on density matrix renormalizationHallberg, Karen AstridDensity Matrix RenormalizationLow-Dimensional SystemsNumerical MethodsQuantum InformationStrongly Correlated Electronshttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1The Density Matrix Renormalization Group (DMRG) has become a powerful numerical method that can be applied to nanoscopic and low-dimensional strongly correlated fermionic and bosonic systems. It allows for a very precise calculation of static, dynamic and thermodynamic properties. Its field of applicability has now extended beyond Condensed Matter, and is successfully used in Quantum Chemistry, Statistical Mechanics, Quantum Information Theory, Nuclear and High Energy Physics as well. In this article, we briefly review the main aspects of the method and present some of the most relevant applications. The recent quantum information interpretation, the development of highly accurate time-dependent algorithms and the possibility of using the DMRG as the impurity-solver of the Dynamical Mean Field Method (DMFT) give new insights into its present and potential uses. We review the numerous very recent applications of these techniques whe the DMRG has shown to be one of the most reliable and versatile methods in modern computational physics.Fil: Hallberg, Karen Astrid. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; ArgentinaAmerican Scientific Publishers2008-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/postscriptapplication/pdfhttp://hdl.handle.net/11336/70018Hallberg, Karen Astrid; Numerical methods for nanoscopic systems based on density matrix renormalization; American Scientific Publishers; Journal Of Computational And Theoretical Nanoscience; 5; 5; 12-2008; 923-9411546-1955CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.ingentaconnect.com/content/asp/jctn/2008/00000005/00000005/art00005info:eu-repo/semantics/altIdentifier/doi/10.1166/jctn.2008.2534info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:34:07Zoai:ri.conicet.gov.ar:11336/70018instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:34:07.999CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Numerical methods for nanoscopic systems based on density matrix renormalization |
title |
Numerical methods for nanoscopic systems based on density matrix renormalization |
spellingShingle |
Numerical methods for nanoscopic systems based on density matrix renormalization Hallberg, Karen Astrid Density Matrix Renormalization Low-Dimensional Systems Numerical Methods Quantum Information Strongly Correlated Electrons |
title_short |
Numerical methods for nanoscopic systems based on density matrix renormalization |
title_full |
Numerical methods for nanoscopic systems based on density matrix renormalization |
title_fullStr |
Numerical methods for nanoscopic systems based on density matrix renormalization |
title_full_unstemmed |
Numerical methods for nanoscopic systems based on density matrix renormalization |
title_sort |
Numerical methods for nanoscopic systems based on density matrix renormalization |
dc.creator.none.fl_str_mv |
Hallberg, Karen Astrid |
author |
Hallberg, Karen Astrid |
author_facet |
Hallberg, Karen Astrid |
author_role |
author |
dc.subject.none.fl_str_mv |
Density Matrix Renormalization Low-Dimensional Systems Numerical Methods Quantum Information Strongly Correlated Electrons |
topic |
Density Matrix Renormalization Low-Dimensional Systems Numerical Methods Quantum Information Strongly Correlated Electrons |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The Density Matrix Renormalization Group (DMRG) has become a powerful numerical method that can be applied to nanoscopic and low-dimensional strongly correlated fermionic and bosonic systems. It allows for a very precise calculation of static, dynamic and thermodynamic properties. Its field of applicability has now extended beyond Condensed Matter, and is successfully used in Quantum Chemistry, Statistical Mechanics, Quantum Information Theory, Nuclear and High Energy Physics as well. In this article, we briefly review the main aspects of the method and present some of the most relevant applications. The recent quantum information interpretation, the development of highly accurate time-dependent algorithms and the possibility of using the DMRG as the impurity-solver of the Dynamical Mean Field Method (DMFT) give new insights into its present and potential uses. We review the numerous very recent applications of these techniques whe the DMRG has shown to be one of the most reliable and versatile methods in modern computational physics. Fil: Hallberg, Karen Astrid. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina |
description |
The Density Matrix Renormalization Group (DMRG) has become a powerful numerical method that can be applied to nanoscopic and low-dimensional strongly correlated fermionic and bosonic systems. It allows for a very precise calculation of static, dynamic and thermodynamic properties. Its field of applicability has now extended beyond Condensed Matter, and is successfully used in Quantum Chemistry, Statistical Mechanics, Quantum Information Theory, Nuclear and High Energy Physics as well. In this article, we briefly review the main aspects of the method and present some of the most relevant applications. The recent quantum information interpretation, the development of highly accurate time-dependent algorithms and the possibility of using the DMRG as the impurity-solver of the Dynamical Mean Field Method (DMFT) give new insights into its present and potential uses. We review the numerous very recent applications of these techniques whe the DMRG has shown to be one of the most reliable and versatile methods in modern computational physics. |
publishDate |
2008 |
dc.date.none.fl_str_mv |
2008-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/70018 Hallberg, Karen Astrid; Numerical methods for nanoscopic systems based on density matrix renormalization; American Scientific Publishers; Journal Of Computational And Theoretical Nanoscience; 5; 5; 12-2008; 923-941 1546-1955 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/70018 |
identifier_str_mv |
Hallberg, Karen Astrid; Numerical methods for nanoscopic systems based on density matrix renormalization; American Scientific Publishers; Journal Of Computational And Theoretical Nanoscience; 5; 5; 12-2008; 923-941 1546-1955 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.ingentaconnect.com/content/asp/jctn/2008/00000005/00000005/art00005 info:eu-repo/semantics/altIdentifier/doi/10.1166/jctn.2008.2534 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/postscript application/pdf |
dc.publisher.none.fl_str_mv |
American Scientific Publishers |
publisher.none.fl_str_mv |
American Scientific Publishers |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614357411954688 |
score |
13.070432 |