Numerical methods for nanoscopic systems based on density matrix renormalization

Autores
Hallberg, Karen Astrid
Año de publicación
2008
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The Density Matrix Renormalization Group (DMRG) has become a powerful numerical method that can be applied to nanoscopic and low-dimensional strongly correlated fermionic and bosonic systems. It allows for a very precise calculation of static, dynamic and thermodynamic properties. Its field of applicability has now extended beyond Condensed Matter, and is successfully used in Quantum Chemistry, Statistical Mechanics, Quantum Information Theory, Nuclear and High Energy Physics as well. In this article, we briefly review the main aspects of the method and present some of the most relevant applications. The recent quantum information interpretation, the development of highly accurate time-dependent algorithms and the possibility of using the DMRG as the impurity-solver of the Dynamical Mean Field Method (DMFT) give new insights into its present and potential uses. We review the numerous very recent applications of these techniques whe the DMRG has shown to be one of the most reliable and versatile methods in modern computational physics.
Fil: Hallberg, Karen Astrid. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina
Materia
Density Matrix Renormalization
Low-Dimensional Systems
Numerical Methods
Quantum Information
Strongly Correlated Electrons
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/70018

id CONICETDig_a6bd49df193f9812b4c548bf124f5c81
oai_identifier_str oai:ri.conicet.gov.ar:11336/70018
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Numerical methods for nanoscopic systems based on density matrix renormalizationHallberg, Karen AstridDensity Matrix RenormalizationLow-Dimensional SystemsNumerical MethodsQuantum InformationStrongly Correlated Electronshttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1The Density Matrix Renormalization Group (DMRG) has become a powerful numerical method that can be applied to nanoscopic and low-dimensional strongly correlated fermionic and bosonic systems. It allows for a very precise calculation of static, dynamic and thermodynamic properties. Its field of applicability has now extended beyond Condensed Matter, and is successfully used in Quantum Chemistry, Statistical Mechanics, Quantum Information Theory, Nuclear and High Energy Physics as well. In this article, we briefly review the main aspects of the method and present some of the most relevant applications. The recent quantum information interpretation, the development of highly accurate time-dependent algorithms and the possibility of using the DMRG as the impurity-solver of the Dynamical Mean Field Method (DMFT) give new insights into its present and potential uses. We review the numerous very recent applications of these techniques whe the DMRG has shown to be one of the most reliable and versatile methods in modern computational physics.Fil: Hallberg, Karen Astrid. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; ArgentinaAmerican Scientific Publishers2008-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/postscriptapplication/pdfhttp://hdl.handle.net/11336/70018Hallberg, Karen Astrid; Numerical methods for nanoscopic systems based on density matrix renormalization; American Scientific Publishers; Journal Of Computational And Theoretical Nanoscience; 5; 5; 12-2008; 923-9411546-1955CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.ingentaconnect.com/content/asp/jctn/2008/00000005/00000005/art00005info:eu-repo/semantics/altIdentifier/doi/10.1166/jctn.2008.2534info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:34:07Zoai:ri.conicet.gov.ar:11336/70018instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:34:07.999CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Numerical methods for nanoscopic systems based on density matrix renormalization
title Numerical methods for nanoscopic systems based on density matrix renormalization
spellingShingle Numerical methods for nanoscopic systems based on density matrix renormalization
Hallberg, Karen Astrid
Density Matrix Renormalization
Low-Dimensional Systems
Numerical Methods
Quantum Information
Strongly Correlated Electrons
title_short Numerical methods for nanoscopic systems based on density matrix renormalization
title_full Numerical methods for nanoscopic systems based on density matrix renormalization
title_fullStr Numerical methods for nanoscopic systems based on density matrix renormalization
title_full_unstemmed Numerical methods for nanoscopic systems based on density matrix renormalization
title_sort Numerical methods for nanoscopic systems based on density matrix renormalization
dc.creator.none.fl_str_mv Hallberg, Karen Astrid
author Hallberg, Karen Astrid
author_facet Hallberg, Karen Astrid
author_role author
dc.subject.none.fl_str_mv Density Matrix Renormalization
Low-Dimensional Systems
Numerical Methods
Quantum Information
Strongly Correlated Electrons
topic Density Matrix Renormalization
Low-Dimensional Systems
Numerical Methods
Quantum Information
Strongly Correlated Electrons
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv The Density Matrix Renormalization Group (DMRG) has become a powerful numerical method that can be applied to nanoscopic and low-dimensional strongly correlated fermionic and bosonic systems. It allows for a very precise calculation of static, dynamic and thermodynamic properties. Its field of applicability has now extended beyond Condensed Matter, and is successfully used in Quantum Chemistry, Statistical Mechanics, Quantum Information Theory, Nuclear and High Energy Physics as well. In this article, we briefly review the main aspects of the method and present some of the most relevant applications. The recent quantum information interpretation, the development of highly accurate time-dependent algorithms and the possibility of using the DMRG as the impurity-solver of the Dynamical Mean Field Method (DMFT) give new insights into its present and potential uses. We review the numerous very recent applications of these techniques whe the DMRG has shown to be one of the most reliable and versatile methods in modern computational physics.
Fil: Hallberg, Karen Astrid. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina
description The Density Matrix Renormalization Group (DMRG) has become a powerful numerical method that can be applied to nanoscopic and low-dimensional strongly correlated fermionic and bosonic systems. It allows for a very precise calculation of static, dynamic and thermodynamic properties. Its field of applicability has now extended beyond Condensed Matter, and is successfully used in Quantum Chemistry, Statistical Mechanics, Quantum Information Theory, Nuclear and High Energy Physics as well. In this article, we briefly review the main aspects of the method and present some of the most relevant applications. The recent quantum information interpretation, the development of highly accurate time-dependent algorithms and the possibility of using the DMRG as the impurity-solver of the Dynamical Mean Field Method (DMFT) give new insights into its present and potential uses. We review the numerous very recent applications of these techniques whe the DMRG has shown to be one of the most reliable and versatile methods in modern computational physics.
publishDate 2008
dc.date.none.fl_str_mv 2008-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/70018
Hallberg, Karen Astrid; Numerical methods for nanoscopic systems based on density matrix renormalization; American Scientific Publishers; Journal Of Computational And Theoretical Nanoscience; 5; 5; 12-2008; 923-941
1546-1955
CONICET Digital
CONICET
url http://hdl.handle.net/11336/70018
identifier_str_mv Hallberg, Karen Astrid; Numerical methods for nanoscopic systems based on density matrix renormalization; American Scientific Publishers; Journal Of Computational And Theoretical Nanoscience; 5; 5; 12-2008; 923-941
1546-1955
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.ingentaconnect.com/content/asp/jctn/2008/00000005/00000005/art00005
info:eu-repo/semantics/altIdentifier/doi/10.1166/jctn.2008.2534
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/postscript
application/pdf
dc.publisher.none.fl_str_mv American Scientific Publishers
publisher.none.fl_str_mv American Scientific Publishers
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614357411954688
score 13.070432