Effects of binary variables in mixed integer linear programming based unit commitment in large-scale electricity markets
- Autores
- Alemany, Juan Manuel; Kasprzyk, Leszek; Magnago, Fernando
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Mixed integer linear programming is one of the main approaches used to solve unit commitment problems. Due to the computational complexity of unit commitment problems, several researches remark the benefits of using less binary variables or relaxing them for the branch-and-cut algorithm. However, integrality constraints relaxation seems to be case dependent because there are many instances where applying it may not improve the computational burden. In addition, there is a lack of extensive numerical experiments evaluating the effects of the relaxation of binary variables in mixed integer linear programming based unit commitment. Therefore, the primary purpose of this work is to analyze the effects of binary variables and compare different relaxations, supported by extensive computational experiments. To accomplish this objective, two power systems are used for the numerical tests: the IEEE118 test system and a very large scale real system. The results suggest that a direct link between the relaxation of binary variables and computational burden cannot be easily assured in the general case. Therefore, relaxing binary variables should not be used as a general rule-of-practice to improve computational burden, at least, until each particular model is tested under different load scenarios and formulations to quantify the final effects of binary variables on the specific UC implementation. The secondary aim of this work is to give some preliminary insight into the reasons that could be supporting the binary relaxation in some UC instances.
Fil: Alemany, Juan Manuel. Universidad Nacional de Río Cuarto. Facultad de Ingeniería. Departamento de Electricidad y Electrónica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina
Fil: Kasprzyk, Leszek. Poznan University of Technology. Institute of Electrical and Electronics Industry; Polonia
Fil: Magnago, Fernando. Universidad Nacional de Río Cuarto. Facultad de Ingeniería. Departamento de Electricidad y Electrónica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina. Nexant Inc; Estados Unidos - Materia
-
BINARY VARIABLES RELAXATION
BRANCH AND CUT ALGORITHM
DAY-AHEAD ELECTRICITY MARKET CLEARING
MIXED INTEGER LINEAR PROGRAMMING
UNIT COMMITMENT - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/138907
Ver los metadatos del registro completo
id |
CONICETDig_a69134fb1e7f0beb949538711b30d0e7 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/138907 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Effects of binary variables in mixed integer linear programming based unit commitment in large-scale electricity marketsAlemany, Juan ManuelKasprzyk, LeszekMagnago, FernandoBINARY VARIABLES RELAXATIONBRANCH AND CUT ALGORITHMDAY-AHEAD ELECTRICITY MARKET CLEARINGMIXED INTEGER LINEAR PROGRAMMINGUNIT COMMITMENThttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2Mixed integer linear programming is one of the main approaches used to solve unit commitment problems. Due to the computational complexity of unit commitment problems, several researches remark the benefits of using less binary variables or relaxing them for the branch-and-cut algorithm. However, integrality constraints relaxation seems to be case dependent because there are many instances where applying it may not improve the computational burden. In addition, there is a lack of extensive numerical experiments evaluating the effects of the relaxation of binary variables in mixed integer linear programming based unit commitment. Therefore, the primary purpose of this work is to analyze the effects of binary variables and compare different relaxations, supported by extensive computational experiments. To accomplish this objective, two power systems are used for the numerical tests: the IEEE118 test system and a very large scale real system. The results suggest that a direct link between the relaxation of binary variables and computational burden cannot be easily assured in the general case. Therefore, relaxing binary variables should not be used as a general rule-of-practice to improve computational burden, at least, until each particular model is tested under different load scenarios and formulations to quantify the final effects of binary variables on the specific UC implementation. The secondary aim of this work is to give some preliminary insight into the reasons that could be supporting the binary relaxation in some UC instances.Fil: Alemany, Juan Manuel. Universidad Nacional de Río Cuarto. Facultad de Ingeniería. Departamento de Electricidad y Electrónica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; ArgentinaFil: Kasprzyk, Leszek. Poznan University of Technology. Institute of Electrical and Electronics Industry; PoloniaFil: Magnago, Fernando. Universidad Nacional de Río Cuarto. Facultad de Ingeniería. Departamento de Electricidad y Electrónica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina. Nexant Inc; Estados UnidosElsevier Science SA2018-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/138907Alemany, Juan Manuel; Kasprzyk, Leszek; Magnago, Fernando; Effects of binary variables in mixed integer linear programming based unit commitment in large-scale electricity markets; Elsevier Science SA; Electric Power Systems Research; 160; 7-2018; 429-4380378-7796CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.epsr.2018.03.019info:eu-repo/semantics/altIdentifier/url/http://linkinghub.elsevier.com/retrieve/pii/S0378779618300919info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:38:59Zoai:ri.conicet.gov.ar:11336/138907instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:38:59.765CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Effects of binary variables in mixed integer linear programming based unit commitment in large-scale electricity markets |
title |
Effects of binary variables in mixed integer linear programming based unit commitment in large-scale electricity markets |
spellingShingle |
Effects of binary variables in mixed integer linear programming based unit commitment in large-scale electricity markets Alemany, Juan Manuel BINARY VARIABLES RELAXATION BRANCH AND CUT ALGORITHM DAY-AHEAD ELECTRICITY MARKET CLEARING MIXED INTEGER LINEAR PROGRAMMING UNIT COMMITMENT |
title_short |
Effects of binary variables in mixed integer linear programming based unit commitment in large-scale electricity markets |
title_full |
Effects of binary variables in mixed integer linear programming based unit commitment in large-scale electricity markets |
title_fullStr |
Effects of binary variables in mixed integer linear programming based unit commitment in large-scale electricity markets |
title_full_unstemmed |
Effects of binary variables in mixed integer linear programming based unit commitment in large-scale electricity markets |
title_sort |
Effects of binary variables in mixed integer linear programming based unit commitment in large-scale electricity markets |
dc.creator.none.fl_str_mv |
Alemany, Juan Manuel Kasprzyk, Leszek Magnago, Fernando |
author |
Alemany, Juan Manuel |
author_facet |
Alemany, Juan Manuel Kasprzyk, Leszek Magnago, Fernando |
author_role |
author |
author2 |
Kasprzyk, Leszek Magnago, Fernando |
author2_role |
author author |
dc.subject.none.fl_str_mv |
BINARY VARIABLES RELAXATION BRANCH AND CUT ALGORITHM DAY-AHEAD ELECTRICITY MARKET CLEARING MIXED INTEGER LINEAR PROGRAMMING UNIT COMMITMENT |
topic |
BINARY VARIABLES RELAXATION BRANCH AND CUT ALGORITHM DAY-AHEAD ELECTRICITY MARKET CLEARING MIXED INTEGER LINEAR PROGRAMMING UNIT COMMITMENT |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.2 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
Mixed integer linear programming is one of the main approaches used to solve unit commitment problems. Due to the computational complexity of unit commitment problems, several researches remark the benefits of using less binary variables or relaxing them for the branch-and-cut algorithm. However, integrality constraints relaxation seems to be case dependent because there are many instances where applying it may not improve the computational burden. In addition, there is a lack of extensive numerical experiments evaluating the effects of the relaxation of binary variables in mixed integer linear programming based unit commitment. Therefore, the primary purpose of this work is to analyze the effects of binary variables and compare different relaxations, supported by extensive computational experiments. To accomplish this objective, two power systems are used for the numerical tests: the IEEE118 test system and a very large scale real system. The results suggest that a direct link between the relaxation of binary variables and computational burden cannot be easily assured in the general case. Therefore, relaxing binary variables should not be used as a general rule-of-practice to improve computational burden, at least, until each particular model is tested under different load scenarios and formulations to quantify the final effects of binary variables on the specific UC implementation. The secondary aim of this work is to give some preliminary insight into the reasons that could be supporting the binary relaxation in some UC instances. Fil: Alemany, Juan Manuel. Universidad Nacional de Río Cuarto. Facultad de Ingeniería. Departamento de Electricidad y Electrónica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina Fil: Kasprzyk, Leszek. Poznan University of Technology. Institute of Electrical and Electronics Industry; Polonia Fil: Magnago, Fernando. Universidad Nacional de Río Cuarto. Facultad de Ingeniería. Departamento de Electricidad y Electrónica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina. Nexant Inc; Estados Unidos |
description |
Mixed integer linear programming is one of the main approaches used to solve unit commitment problems. Due to the computational complexity of unit commitment problems, several researches remark the benefits of using less binary variables or relaxing them for the branch-and-cut algorithm. However, integrality constraints relaxation seems to be case dependent because there are many instances where applying it may not improve the computational burden. In addition, there is a lack of extensive numerical experiments evaluating the effects of the relaxation of binary variables in mixed integer linear programming based unit commitment. Therefore, the primary purpose of this work is to analyze the effects of binary variables and compare different relaxations, supported by extensive computational experiments. To accomplish this objective, two power systems are used for the numerical tests: the IEEE118 test system and a very large scale real system. The results suggest that a direct link between the relaxation of binary variables and computational burden cannot be easily assured in the general case. Therefore, relaxing binary variables should not be used as a general rule-of-practice to improve computational burden, at least, until each particular model is tested under different load scenarios and formulations to quantify the final effects of binary variables on the specific UC implementation. The secondary aim of this work is to give some preliminary insight into the reasons that could be supporting the binary relaxation in some UC instances. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-07 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/138907 Alemany, Juan Manuel; Kasprzyk, Leszek; Magnago, Fernando; Effects of binary variables in mixed integer linear programming based unit commitment in large-scale electricity markets; Elsevier Science SA; Electric Power Systems Research; 160; 7-2018; 429-438 0378-7796 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/138907 |
identifier_str_mv |
Alemany, Juan Manuel; Kasprzyk, Leszek; Magnago, Fernando; Effects of binary variables in mixed integer linear programming based unit commitment in large-scale electricity markets; Elsevier Science SA; Electric Power Systems Research; 160; 7-2018; 429-438 0378-7796 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.epsr.2018.03.019 info:eu-repo/semantics/altIdentifier/url/http://linkinghub.elsevier.com/retrieve/pii/S0378779618300919 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science SA |
publisher.none.fl_str_mv |
Elsevier Science SA |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613232828874752 |
score |
13.070432 |