Photonic quantum simulator for unbiased phase covariant cloning

Autores
Knoll, Laura Tamara; López Grande, Ignacio Hernán; Larotonda, Miguel Antonio
Año de publicación
2018
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We present the results of a linear optics photonic implementation of a quantum circuit that simulates a phase covariant cloner, using two different degrees of freedom of a single photon. We experimentally simulate the action of two mirrored 1 → 2 cloners, each of them biasing the cloned states into opposite regions of the Bloch sphere. We show that by applying a random sequence of these two cloners, an eavesdropper can mitigate the amount of noise added to the original input state and therefore, prepare clones with no bias, but with the same individual fidelity, masking its presence in a quantum key distribution protocol. Input polarization qubit states are cloned into path qubit states of the same photon, which is identified as a potential eavesdropper in a quantum key distribution protocol. The device has the flexibility to produce mirrored versions that optimally clone states on either the northern or southern hemispheres of the Bloch sphere, as well as to simulate optimal and non-optimal cloning machines by tuning the asymmetry on each of the cloning machines.
Fil: Knoll, Laura Tamara. Ministerio de Defensa. Instituto de Investigaciones Científicas y Técnicas para la Defensa; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina
Fil: López Grande, Ignacio Hernán. Ministerio de Defensa. Instituto de Investigaciones Científicas y Técnicas para la Defensa; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina
Fil: Larotonda, Miguel Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Ministerio de Defensa. Instituto de Investigaciones Científicas y Técnicas para la Defensa; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina
Materia
Quantum Cloning Machine
Phase Covariant Cloning
Photonic Quantum Simulator
Eavesdropping
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/66097

id CONICETDig_a68aafc56119d9b13a2f155a4774d871
oai_identifier_str oai:ri.conicet.gov.ar:11336/66097
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Photonic quantum simulator for unbiased phase covariant cloningKnoll, Laura TamaraLópez Grande, Ignacio HernánLarotonda, Miguel AntonioQuantum Cloning MachinePhase Covariant CloningPhotonic Quantum SimulatorEavesdroppinghttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We present the results of a linear optics photonic implementation of a quantum circuit that simulates a phase covariant cloner, using two different degrees of freedom of a single photon. We experimentally simulate the action of two mirrored 1 → 2 cloners, each of them biasing the cloned states into opposite regions of the Bloch sphere. We show that by applying a random sequence of these two cloners, an eavesdropper can mitigate the amount of noise added to the original input state and therefore, prepare clones with no bias, but with the same individual fidelity, masking its presence in a quantum key distribution protocol. Input polarization qubit states are cloned into path qubit states of the same photon, which is identified as a potential eavesdropper in a quantum key distribution protocol. The device has the flexibility to produce mirrored versions that optimally clone states on either the northern or southern hemispheres of the Bloch sphere, as well as to simulate optimal and non-optimal cloning machines by tuning the asymmetry on each of the cloning machines.Fil: Knoll, Laura Tamara. Ministerio de Defensa. Instituto de Investigaciones Científicas y Técnicas para la Defensa; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; ArgentinaFil: López Grande, Ignacio Hernán. Ministerio de Defensa. Instituto de Investigaciones Científicas y Técnicas para la Defensa; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; ArgentinaFil: Larotonda, Miguel Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Ministerio de Defensa. Instituto de Investigaciones Científicas y Técnicas para la Defensa; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; ArgentinaSpringer2018-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/66097Knoll, Laura Tamara; López Grande, Ignacio Hernán; Larotonda, Miguel Antonio; Photonic quantum simulator for unbiased phase covariant cloning; Springer; Applied Physics B: Lasers and Optics; 124; 1; 1-20180946-2171CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://link.springer.com/10.1007/s00340-017-6871-zinfo:eu-repo/semantics/altIdentifier/doi/10.1007/s00340-017-6871-zinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:06:25Zoai:ri.conicet.gov.ar:11336/66097instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:06:25.891CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Photonic quantum simulator for unbiased phase covariant cloning
title Photonic quantum simulator for unbiased phase covariant cloning
spellingShingle Photonic quantum simulator for unbiased phase covariant cloning
Knoll, Laura Tamara
Quantum Cloning Machine
Phase Covariant Cloning
Photonic Quantum Simulator
Eavesdropping
title_short Photonic quantum simulator for unbiased phase covariant cloning
title_full Photonic quantum simulator for unbiased phase covariant cloning
title_fullStr Photonic quantum simulator for unbiased phase covariant cloning
title_full_unstemmed Photonic quantum simulator for unbiased phase covariant cloning
title_sort Photonic quantum simulator for unbiased phase covariant cloning
dc.creator.none.fl_str_mv Knoll, Laura Tamara
López Grande, Ignacio Hernán
Larotonda, Miguel Antonio
author Knoll, Laura Tamara
author_facet Knoll, Laura Tamara
López Grande, Ignacio Hernán
Larotonda, Miguel Antonio
author_role author
author2 López Grande, Ignacio Hernán
Larotonda, Miguel Antonio
author2_role author
author
dc.subject.none.fl_str_mv Quantum Cloning Machine
Phase Covariant Cloning
Photonic Quantum Simulator
Eavesdropping
topic Quantum Cloning Machine
Phase Covariant Cloning
Photonic Quantum Simulator
Eavesdropping
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We present the results of a linear optics photonic implementation of a quantum circuit that simulates a phase covariant cloner, using two different degrees of freedom of a single photon. We experimentally simulate the action of two mirrored 1 → 2 cloners, each of them biasing the cloned states into opposite regions of the Bloch sphere. We show that by applying a random sequence of these two cloners, an eavesdropper can mitigate the amount of noise added to the original input state and therefore, prepare clones with no bias, but with the same individual fidelity, masking its presence in a quantum key distribution protocol. Input polarization qubit states are cloned into path qubit states of the same photon, which is identified as a potential eavesdropper in a quantum key distribution protocol. The device has the flexibility to produce mirrored versions that optimally clone states on either the northern or southern hemispheres of the Bloch sphere, as well as to simulate optimal and non-optimal cloning machines by tuning the asymmetry on each of the cloning machines.
Fil: Knoll, Laura Tamara. Ministerio de Defensa. Instituto de Investigaciones Científicas y Técnicas para la Defensa; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina
Fil: López Grande, Ignacio Hernán. Ministerio de Defensa. Instituto de Investigaciones Científicas y Técnicas para la Defensa; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina
Fil: Larotonda, Miguel Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Ministerio de Defensa. Instituto de Investigaciones Científicas y Técnicas para la Defensa; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina
description We present the results of a linear optics photonic implementation of a quantum circuit that simulates a phase covariant cloner, using two different degrees of freedom of a single photon. We experimentally simulate the action of two mirrored 1 → 2 cloners, each of them biasing the cloned states into opposite regions of the Bloch sphere. We show that by applying a random sequence of these two cloners, an eavesdropper can mitigate the amount of noise added to the original input state and therefore, prepare clones with no bias, but with the same individual fidelity, masking its presence in a quantum key distribution protocol. Input polarization qubit states are cloned into path qubit states of the same photon, which is identified as a potential eavesdropper in a quantum key distribution protocol. The device has the flexibility to produce mirrored versions that optimally clone states on either the northern or southern hemispheres of the Bloch sphere, as well as to simulate optimal and non-optimal cloning machines by tuning the asymmetry on each of the cloning machines.
publishDate 2018
dc.date.none.fl_str_mv 2018-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/66097
Knoll, Laura Tamara; López Grande, Ignacio Hernán; Larotonda, Miguel Antonio; Photonic quantum simulator for unbiased phase covariant cloning; Springer; Applied Physics B: Lasers and Optics; 124; 1; 1-2018
0946-2171
CONICET Digital
CONICET
url http://hdl.handle.net/11336/66097
identifier_str_mv Knoll, Laura Tamara; López Grande, Ignacio Hernán; Larotonda, Miguel Antonio; Photonic quantum simulator for unbiased phase covariant cloning; Springer; Applied Physics B: Lasers and Optics; 124; 1; 1-2018
0946-2171
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://link.springer.com/10.1007/s00340-017-6871-z
info:eu-repo/semantics/altIdentifier/doi/10.1007/s00340-017-6871-z
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269958339297280
score 13.13397