The Maximum Number of Dominating Induced Matchings
- Autores
- Lin, Min Chih; Moyano, Verónica Andrea; Rautenbach, Dieter; Szwarcfiter, Jayme L.
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- A matching M of a graph G is a dominating induced matching (DIM) of G if every edge of G is either in M or adjacent with exactly one edge in M. We prove sharp upper bounds on the number μ(G) of DIMs of a graph G and characterize all extremal graphs. Our results imply that if G is a graph of order n, then μ(G) ≤ 3n 3 ; μ(G) ≤ 4n 5 provided G is triangle-free; and μ(G) ≤ 4n−1 5 provided n ≥ 9 and G is connected.
Fil: Lin, Min Chih. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Cálculo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Moyano, Verónica Andrea. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Cálculo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Rautenbach, Dieter. Universitat Ulm; Alemania
Fil: Szwarcfiter, Jayme L.. Universidade Federal do Rio de Janeiro; Brasil - Materia
-
Dominating Induced Matching
Fibonacci Numbers - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/42701
Ver los metadatos del registro completo
id |
CONICETDig_a667d57df8f88ab993c79310d016dcfb |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/42701 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
The Maximum Number of Dominating Induced MatchingsLin, Min ChihMoyano, Verónica AndreaRautenbach, DieterSzwarcfiter, Jayme L.Dominating Induced MatchingFibonacci Numbershttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1A matching M of a graph G is a dominating induced matching (DIM) of G if every edge of G is either in M or adjacent with exactly one edge in M. We prove sharp upper bounds on the number μ(G) of DIMs of a graph G and characterize all extremal graphs. Our results imply that if G is a graph of order n, then μ(G) ≤ 3n 3 ; μ(G) ≤ 4n 5 provided G is triangle-free; and μ(G) ≤ 4n−1 5 provided n ≥ 9 and G is connected.Fil: Lin, Min Chih. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Cálculo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Moyano, Verónica Andrea. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Cálculo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Rautenbach, Dieter. Universitat Ulm; AlemaniaFil: Szwarcfiter, Jayme L.. Universidade Federal do Rio de Janeiro; BrasilJohn Wiley & Sons Inc2015-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/42701Lin, Min Chih; Moyano, Verónica Andrea; Rautenbach, Dieter; Szwarcfiter, Jayme L.; The Maximum Number of Dominating Induced Matchings; John Wiley & Sons Inc; Journal of Graph Theory; 78; 4; 4-2015; 258-2680364-9024CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1002/jgt.21804info:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/abs/10.1002/jgt.21804info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:06:10Zoai:ri.conicet.gov.ar:11336/42701instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:06:10.643CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
The Maximum Number of Dominating Induced Matchings |
title |
The Maximum Number of Dominating Induced Matchings |
spellingShingle |
The Maximum Number of Dominating Induced Matchings Lin, Min Chih Dominating Induced Matching Fibonacci Numbers |
title_short |
The Maximum Number of Dominating Induced Matchings |
title_full |
The Maximum Number of Dominating Induced Matchings |
title_fullStr |
The Maximum Number of Dominating Induced Matchings |
title_full_unstemmed |
The Maximum Number of Dominating Induced Matchings |
title_sort |
The Maximum Number of Dominating Induced Matchings |
dc.creator.none.fl_str_mv |
Lin, Min Chih Moyano, Verónica Andrea Rautenbach, Dieter Szwarcfiter, Jayme L. |
author |
Lin, Min Chih |
author_facet |
Lin, Min Chih Moyano, Verónica Andrea Rautenbach, Dieter Szwarcfiter, Jayme L. |
author_role |
author |
author2 |
Moyano, Verónica Andrea Rautenbach, Dieter Szwarcfiter, Jayme L. |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Dominating Induced Matching Fibonacci Numbers |
topic |
Dominating Induced Matching Fibonacci Numbers |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
A matching M of a graph G is a dominating induced matching (DIM) of G if every edge of G is either in M or adjacent with exactly one edge in M. We prove sharp upper bounds on the number μ(G) of DIMs of a graph G and characterize all extremal graphs. Our results imply that if G is a graph of order n, then μ(G) ≤ 3n 3 ; μ(G) ≤ 4n 5 provided G is triangle-free; and μ(G) ≤ 4n−1 5 provided n ≥ 9 and G is connected. Fil: Lin, Min Chih. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Cálculo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Moyano, Verónica Andrea. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Cálculo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Rautenbach, Dieter. Universitat Ulm; Alemania Fil: Szwarcfiter, Jayme L.. Universidade Federal do Rio de Janeiro; Brasil |
description |
A matching M of a graph G is a dominating induced matching (DIM) of G if every edge of G is either in M or adjacent with exactly one edge in M. We prove sharp upper bounds on the number μ(G) of DIMs of a graph G and characterize all extremal graphs. Our results imply that if G is a graph of order n, then μ(G) ≤ 3n 3 ; μ(G) ≤ 4n 5 provided G is triangle-free; and μ(G) ≤ 4n−1 5 provided n ≥ 9 and G is connected. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-04 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/42701 Lin, Min Chih; Moyano, Verónica Andrea; Rautenbach, Dieter; Szwarcfiter, Jayme L.; The Maximum Number of Dominating Induced Matchings; John Wiley & Sons Inc; Journal of Graph Theory; 78; 4; 4-2015; 258-268 0364-9024 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/42701 |
identifier_str_mv |
Lin, Min Chih; Moyano, Verónica Andrea; Rautenbach, Dieter; Szwarcfiter, Jayme L.; The Maximum Number of Dominating Induced Matchings; John Wiley & Sons Inc; Journal of Graph Theory; 78; 4; 4-2015; 258-268 0364-9024 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1002/jgt.21804 info:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/abs/10.1002/jgt.21804 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
John Wiley & Sons Inc |
publisher.none.fl_str_mv |
John Wiley & Sons Inc |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842980248923144192 |
score |
12.993085 |