The Maximum Number of Dominating Induced Matchings

Autores
Lin, Min Chih; Moyano, Verónica Andrea; Rautenbach, Dieter; Szwarcfiter, Jayme L.
Año de publicación
2015
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
A matching M of a graph G is a dominating induced matching (DIM) of G if every edge of G is either in M or adjacent with exactly one edge in M. We prove sharp upper bounds on the number μ(G) of DIMs of a graph G and characterize all extremal graphs. Our results imply that if G is a graph of order n, then μ(G) ≤ 3n 3 ; μ(G) ≤ 4n 5 provided G is triangle-free; and μ(G) ≤ 4n−1 5 provided n ≥ 9 and G is connected.
Fil: Lin, Min Chih. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Cálculo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Moyano, Verónica Andrea. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Cálculo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Rautenbach, Dieter. Universitat Ulm; Alemania
Fil: Szwarcfiter, Jayme L.. Universidade Federal do Rio de Janeiro; Brasil
Materia
Dominating Induced Matching
Fibonacci Numbers
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/42701

id CONICETDig_a667d57df8f88ab993c79310d016dcfb
oai_identifier_str oai:ri.conicet.gov.ar:11336/42701
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling The Maximum Number of Dominating Induced MatchingsLin, Min ChihMoyano, Verónica AndreaRautenbach, DieterSzwarcfiter, Jayme L.Dominating Induced MatchingFibonacci Numbershttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1A matching M of a graph G is a dominating induced matching (DIM) of G if every edge of G is either in M or adjacent with exactly one edge in M. We prove sharp upper bounds on the number μ(G) of DIMs of a graph G and characterize all extremal graphs. Our results imply that if G is a graph of order n, then μ(G) ≤ 3n 3 ; μ(G) ≤ 4n 5 provided G is triangle-free; and μ(G) ≤ 4n−1 5 provided n ≥ 9 and G is connected.Fil: Lin, Min Chih. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Cálculo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Moyano, Verónica Andrea. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Cálculo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Rautenbach, Dieter. Universitat Ulm; AlemaniaFil: Szwarcfiter, Jayme L.. Universidade Federal do Rio de Janeiro; BrasilJohn Wiley & Sons Inc2015-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/42701Lin, Min Chih; Moyano, Verónica Andrea; Rautenbach, Dieter; Szwarcfiter, Jayme L.; The Maximum Number of Dominating Induced Matchings; John Wiley & Sons Inc; Journal of Graph Theory; 78; 4; 4-2015; 258-2680364-9024CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1002/jgt.21804info:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/abs/10.1002/jgt.21804info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:06:10Zoai:ri.conicet.gov.ar:11336/42701instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:06:10.643CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv The Maximum Number of Dominating Induced Matchings
title The Maximum Number of Dominating Induced Matchings
spellingShingle The Maximum Number of Dominating Induced Matchings
Lin, Min Chih
Dominating Induced Matching
Fibonacci Numbers
title_short The Maximum Number of Dominating Induced Matchings
title_full The Maximum Number of Dominating Induced Matchings
title_fullStr The Maximum Number of Dominating Induced Matchings
title_full_unstemmed The Maximum Number of Dominating Induced Matchings
title_sort The Maximum Number of Dominating Induced Matchings
dc.creator.none.fl_str_mv Lin, Min Chih
Moyano, Verónica Andrea
Rautenbach, Dieter
Szwarcfiter, Jayme L.
author Lin, Min Chih
author_facet Lin, Min Chih
Moyano, Verónica Andrea
Rautenbach, Dieter
Szwarcfiter, Jayme L.
author_role author
author2 Moyano, Verónica Andrea
Rautenbach, Dieter
Szwarcfiter, Jayme L.
author2_role author
author
author
dc.subject.none.fl_str_mv Dominating Induced Matching
Fibonacci Numbers
topic Dominating Induced Matching
Fibonacci Numbers
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv A matching M of a graph G is a dominating induced matching (DIM) of G if every edge of G is either in M or adjacent with exactly one edge in M. We prove sharp upper bounds on the number μ(G) of DIMs of a graph G and characterize all extremal graphs. Our results imply that if G is a graph of order n, then μ(G) ≤ 3n 3 ; μ(G) ≤ 4n 5 provided G is triangle-free; and μ(G) ≤ 4n−1 5 provided n ≥ 9 and G is connected.
Fil: Lin, Min Chih. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Cálculo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Moyano, Verónica Andrea. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Cálculo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Rautenbach, Dieter. Universitat Ulm; Alemania
Fil: Szwarcfiter, Jayme L.. Universidade Federal do Rio de Janeiro; Brasil
description A matching M of a graph G is a dominating induced matching (DIM) of G if every edge of G is either in M or adjacent with exactly one edge in M. We prove sharp upper bounds on the number μ(G) of DIMs of a graph G and characterize all extremal graphs. Our results imply that if G is a graph of order n, then μ(G) ≤ 3n 3 ; μ(G) ≤ 4n 5 provided G is triangle-free; and μ(G) ≤ 4n−1 5 provided n ≥ 9 and G is connected.
publishDate 2015
dc.date.none.fl_str_mv 2015-04
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/42701
Lin, Min Chih; Moyano, Verónica Andrea; Rautenbach, Dieter; Szwarcfiter, Jayme L.; The Maximum Number of Dominating Induced Matchings; John Wiley & Sons Inc; Journal of Graph Theory; 78; 4; 4-2015; 258-268
0364-9024
CONICET Digital
CONICET
url http://hdl.handle.net/11336/42701
identifier_str_mv Lin, Min Chih; Moyano, Verónica Andrea; Rautenbach, Dieter; Szwarcfiter, Jayme L.; The Maximum Number of Dominating Induced Matchings; John Wiley & Sons Inc; Journal of Graph Theory; 78; 4; 4-2015; 258-268
0364-9024
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1002/jgt.21804
info:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/abs/10.1002/jgt.21804
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv John Wiley & Sons Inc
publisher.none.fl_str_mv John Wiley & Sons Inc
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842980248923144192
score 12.993085