Can the wrf model characterize atmospheric stability for wind energy purposes?

Autores
Mayol, María Laura; Saulo, Andrea Celeste; Otero, Alejandro Daniel
Año de publicación
2023
Idioma
inglés
Tipo de recurso
documento de conferencia
Estado
versión publicada
Descripción
To foster energy transition, renewable energies need to achieve their full potential. One phenomena greatly impacting power production in wind energy is the wake production behind each wind turbine or entire farms. These wake regions are strongly modulated by low-layer atmospheric stability. In this work, the capability of the WRF mesoscale model to characterize the stability in the Rawson Wind Farm location is addressed. Through a dynamical downscaling from ERA5 data, the WRF outcomes are used to estimate the stability parameter RiB, which is compared to the one computed from measurements. A great similarity emerges from the analysis, in statistical terms, between the stability conditions estimated from the observations and those resulting from the simulations. These results encourage the use of mesoscale models to obtain a more detailed description of the low-layer flow and therefore reduce the uncertainties linked to the environmental conditions that affect a wind farm.
Fil: Mayol, María Laura. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ciencias de la Atmósfera y los Océanos; Argentina
Fil: Saulo, Andrea Celeste. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ciencias de la Atmósfera y los Océanos; Argentina. Ministerio de Defensa. Secretaria de Planeamiento. Servicio Meteorológico Nacional; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Otero, Alejandro Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Simulación Computacional para Aplicaciones Tecnológicas; Argentina
XIV Congreso Argentino de Meteorología
Buenos Aires
Argentina
Centro Argentino de Meteorólogos
Materia
Mesoscale
Stability assessment
Wind power
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/210850

id CONICETDig_a63d29d37b5cf2a3d8cfe64efc872896
oai_identifier_str oai:ri.conicet.gov.ar:11336/210850
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Can the wrf model characterize atmospheric stability for wind energy purposes?Mayol, María LauraSaulo, Andrea CelesteOtero, Alejandro DanielMesoscaleStability assessmentWind powerhttps://purl.org/becyt/ford/1.5https://purl.org/becyt/ford/1To foster energy transition, renewable energies need to achieve their full potential. One phenomena greatly impacting power production in wind energy is the wake production behind each wind turbine or entire farms. These wake regions are strongly modulated by low-layer atmospheric stability. In this work, the capability of the WRF mesoscale model to characterize the stability in the Rawson Wind Farm location is addressed. Through a dynamical downscaling from ERA5 data, the WRF outcomes are used to estimate the stability parameter RiB, which is compared to the one computed from measurements. A great similarity emerges from the analysis, in statistical terms, between the stability conditions estimated from the observations and those resulting from the simulations. These results encourage the use of mesoscale models to obtain a more detailed description of the low-layer flow and therefore reduce the uncertainties linked to the environmental conditions that affect a wind farm.Fil: Mayol, María Laura. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ciencias de la Atmósfera y los Océanos; ArgentinaFil: Saulo, Andrea Celeste. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ciencias de la Atmósfera y los Océanos; Argentina. Ministerio de Defensa. Secretaria de Planeamiento. Servicio Meteorológico Nacional; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Otero, Alejandro Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Simulación Computacional para Aplicaciones Tecnológicas; ArgentinaXIV Congreso Argentino de MeteorologíaBuenos AiresArgentinaCentro Argentino de MeteorólogosCentro Argentino de Meteorólogos2023info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObjectCongresoBookhttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/210850Can the wrf model characterize atmospheric stability for wind energy purposes?; XIV Congreso Argentino de Meteorología; Buenos Aires; Argentina; 2022; 1-3CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://cenamet.org.ar/congremet/wp-content/uploads/2023/02/LibroActas_compressed.pdfInternacionalinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:08:21Zoai:ri.conicet.gov.ar:11336/210850instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:08:22.12CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Can the wrf model characterize atmospheric stability for wind energy purposes?
title Can the wrf model characterize atmospheric stability for wind energy purposes?
spellingShingle Can the wrf model characterize atmospheric stability for wind energy purposes?
Mayol, María Laura
Mesoscale
Stability assessment
Wind power
title_short Can the wrf model characterize atmospheric stability for wind energy purposes?
title_full Can the wrf model characterize atmospheric stability for wind energy purposes?
title_fullStr Can the wrf model characterize atmospheric stability for wind energy purposes?
title_full_unstemmed Can the wrf model characterize atmospheric stability for wind energy purposes?
title_sort Can the wrf model characterize atmospheric stability for wind energy purposes?
dc.creator.none.fl_str_mv Mayol, María Laura
Saulo, Andrea Celeste
Otero, Alejandro Daniel
author Mayol, María Laura
author_facet Mayol, María Laura
Saulo, Andrea Celeste
Otero, Alejandro Daniel
author_role author
author2 Saulo, Andrea Celeste
Otero, Alejandro Daniel
author2_role author
author
dc.subject.none.fl_str_mv Mesoscale
Stability assessment
Wind power
topic Mesoscale
Stability assessment
Wind power
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.5
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv To foster energy transition, renewable energies need to achieve their full potential. One phenomena greatly impacting power production in wind energy is the wake production behind each wind turbine or entire farms. These wake regions are strongly modulated by low-layer atmospheric stability. In this work, the capability of the WRF mesoscale model to characterize the stability in the Rawson Wind Farm location is addressed. Through a dynamical downscaling from ERA5 data, the WRF outcomes are used to estimate the stability parameter RiB, which is compared to the one computed from measurements. A great similarity emerges from the analysis, in statistical terms, between the stability conditions estimated from the observations and those resulting from the simulations. These results encourage the use of mesoscale models to obtain a more detailed description of the low-layer flow and therefore reduce the uncertainties linked to the environmental conditions that affect a wind farm.
Fil: Mayol, María Laura. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ciencias de la Atmósfera y los Océanos; Argentina
Fil: Saulo, Andrea Celeste. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ciencias de la Atmósfera y los Océanos; Argentina. Ministerio de Defensa. Secretaria de Planeamiento. Servicio Meteorológico Nacional; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Otero, Alejandro Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Simulación Computacional para Aplicaciones Tecnológicas; Argentina
XIV Congreso Argentino de Meteorología
Buenos Aires
Argentina
Centro Argentino de Meteorólogos
description To foster energy transition, renewable energies need to achieve their full potential. One phenomena greatly impacting power production in wind energy is the wake production behind each wind turbine or entire farms. These wake regions are strongly modulated by low-layer atmospheric stability. In this work, the capability of the WRF mesoscale model to characterize the stability in the Rawson Wind Farm location is addressed. Through a dynamical downscaling from ERA5 data, the WRF outcomes are used to estimate the stability parameter RiB, which is compared to the one computed from measurements. A great similarity emerges from the analysis, in statistical terms, between the stability conditions estimated from the observations and those resulting from the simulations. These results encourage the use of mesoscale models to obtain a more detailed description of the low-layer flow and therefore reduce the uncertainties linked to the environmental conditions that affect a wind farm.
publishDate 2023
dc.date.none.fl_str_mv 2023
dc.type.none.fl_str_mv info:eu-repo/semantics/publishedVersion
info:eu-repo/semantics/conferenceObject
Congreso
Book
http://purl.org/coar/resource_type/c_5794
info:ar-repo/semantics/documentoDeConferencia
status_str publishedVersion
format conferenceObject
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/210850
Can the wrf model characterize atmospheric stability for wind energy purposes?; XIV Congreso Argentino de Meteorología; Buenos Aires; Argentina; 2022; 1-3
CONICET Digital
CONICET
url http://hdl.handle.net/11336/210850
identifier_str_mv Can the wrf model characterize atmospheric stability for wind energy purposes?; XIV Congreso Argentino de Meteorología; Buenos Aires; Argentina; 2022; 1-3
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://cenamet.org.ar/congremet/wp-content/uploads/2023/02/LibroActas_compressed.pdf
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.coverage.none.fl_str_mv Internacional
dc.publisher.none.fl_str_mv Centro Argentino de Meteorólogos
publisher.none.fl_str_mv Centro Argentino de Meteorólogos
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842270041776586752
score 13.13397