Can the wrf model characterize atmospheric stability for wind energy purposes?
- Autores
- Mayol, María Laura; Saulo, Andrea Celeste; Otero, Alejandro Daniel
- Año de publicación
- 2023
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- To foster energy transition, renewable energies need to achieve their full potential. One phenomena greatly impacting power production in wind energy is the wake production behind each wind turbine or entire farms. These wake regions are strongly modulated by low-layer atmospheric stability. In this work, the capability of the WRF mesoscale model to characterize the stability in the Rawson Wind Farm location is addressed. Through a dynamical downscaling from ERA5 data, the WRF outcomes are used to estimate the stability parameter RiB, which is compared to the one computed from measurements. A great similarity emerges from the analysis, in statistical terms, between the stability conditions estimated from the observations and those resulting from the simulations. These results encourage the use of mesoscale models to obtain a more detailed description of the low-layer flow and therefore reduce the uncertainties linked to the environmental conditions that affect a wind farm.
Fil: Mayol, María Laura. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ciencias de la Atmósfera y los Océanos; Argentina
Fil: Saulo, Andrea Celeste. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ciencias de la Atmósfera y los Océanos; Argentina. Ministerio de Defensa. Secretaria de Planeamiento. Servicio Meteorológico Nacional; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Otero, Alejandro Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Simulación Computacional para Aplicaciones Tecnológicas; Argentina
XIV Congreso Argentino de Meteorología
Buenos Aires
Argentina
Centro Argentino de Meteorólogos - Materia
-
Mesoscale
Stability assessment
Wind power - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/210850
Ver los metadatos del registro completo
id |
CONICETDig_a63d29d37b5cf2a3d8cfe64efc872896 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/210850 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Can the wrf model characterize atmospheric stability for wind energy purposes?Mayol, María LauraSaulo, Andrea CelesteOtero, Alejandro DanielMesoscaleStability assessmentWind powerhttps://purl.org/becyt/ford/1.5https://purl.org/becyt/ford/1To foster energy transition, renewable energies need to achieve their full potential. One phenomena greatly impacting power production in wind energy is the wake production behind each wind turbine or entire farms. These wake regions are strongly modulated by low-layer atmospheric stability. In this work, the capability of the WRF mesoscale model to characterize the stability in the Rawson Wind Farm location is addressed. Through a dynamical downscaling from ERA5 data, the WRF outcomes are used to estimate the stability parameter RiB, which is compared to the one computed from measurements. A great similarity emerges from the analysis, in statistical terms, between the stability conditions estimated from the observations and those resulting from the simulations. These results encourage the use of mesoscale models to obtain a more detailed description of the low-layer flow and therefore reduce the uncertainties linked to the environmental conditions that affect a wind farm.Fil: Mayol, María Laura. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ciencias de la Atmósfera y los Océanos; ArgentinaFil: Saulo, Andrea Celeste. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ciencias de la Atmósfera y los Océanos; Argentina. Ministerio de Defensa. Secretaria de Planeamiento. Servicio Meteorológico Nacional; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Otero, Alejandro Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Simulación Computacional para Aplicaciones Tecnológicas; ArgentinaXIV Congreso Argentino de MeteorologíaBuenos AiresArgentinaCentro Argentino de MeteorólogosCentro Argentino de Meteorólogos2023info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObjectCongresoBookhttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/210850Can the wrf model characterize atmospheric stability for wind energy purposes?; XIV Congreso Argentino de Meteorología; Buenos Aires; Argentina; 2022; 1-3CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://cenamet.org.ar/congremet/wp-content/uploads/2023/02/LibroActas_compressed.pdfInternacionalinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:08:21Zoai:ri.conicet.gov.ar:11336/210850instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:08:22.12CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Can the wrf model characterize atmospheric stability for wind energy purposes? |
title |
Can the wrf model characterize atmospheric stability for wind energy purposes? |
spellingShingle |
Can the wrf model characterize atmospheric stability for wind energy purposes? Mayol, María Laura Mesoscale Stability assessment Wind power |
title_short |
Can the wrf model characterize atmospheric stability for wind energy purposes? |
title_full |
Can the wrf model characterize atmospheric stability for wind energy purposes? |
title_fullStr |
Can the wrf model characterize atmospheric stability for wind energy purposes? |
title_full_unstemmed |
Can the wrf model characterize atmospheric stability for wind energy purposes? |
title_sort |
Can the wrf model characterize atmospheric stability for wind energy purposes? |
dc.creator.none.fl_str_mv |
Mayol, María Laura Saulo, Andrea Celeste Otero, Alejandro Daniel |
author |
Mayol, María Laura |
author_facet |
Mayol, María Laura Saulo, Andrea Celeste Otero, Alejandro Daniel |
author_role |
author |
author2 |
Saulo, Andrea Celeste Otero, Alejandro Daniel |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Mesoscale Stability assessment Wind power |
topic |
Mesoscale Stability assessment Wind power |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.5 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
To foster energy transition, renewable energies need to achieve their full potential. One phenomena greatly impacting power production in wind energy is the wake production behind each wind turbine or entire farms. These wake regions are strongly modulated by low-layer atmospheric stability. In this work, the capability of the WRF mesoscale model to characterize the stability in the Rawson Wind Farm location is addressed. Through a dynamical downscaling from ERA5 data, the WRF outcomes are used to estimate the stability parameter RiB, which is compared to the one computed from measurements. A great similarity emerges from the analysis, in statistical terms, between the stability conditions estimated from the observations and those resulting from the simulations. These results encourage the use of mesoscale models to obtain a more detailed description of the low-layer flow and therefore reduce the uncertainties linked to the environmental conditions that affect a wind farm. Fil: Mayol, María Laura. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ciencias de la Atmósfera y los Océanos; Argentina Fil: Saulo, Andrea Celeste. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ciencias de la Atmósfera y los Océanos; Argentina. Ministerio de Defensa. Secretaria de Planeamiento. Servicio Meteorológico Nacional; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Otero, Alejandro Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Simulación Computacional para Aplicaciones Tecnológicas; Argentina XIV Congreso Argentino de Meteorología Buenos Aires Argentina Centro Argentino de Meteorólogos |
description |
To foster energy transition, renewable energies need to achieve their full potential. One phenomena greatly impacting power production in wind energy is the wake production behind each wind turbine or entire farms. These wake regions are strongly modulated by low-layer atmospheric stability. In this work, the capability of the WRF mesoscale model to characterize the stability in the Rawson Wind Farm location is addressed. Through a dynamical downscaling from ERA5 data, the WRF outcomes are used to estimate the stability parameter RiB, which is compared to the one computed from measurements. A great similarity emerges from the analysis, in statistical terms, between the stability conditions estimated from the observations and those resulting from the simulations. These results encourage the use of mesoscale models to obtain a more detailed description of the low-layer flow and therefore reduce the uncertainties linked to the environmental conditions that affect a wind farm. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion info:eu-repo/semantics/conferenceObject Congreso Book http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
status_str |
publishedVersion |
format |
conferenceObject |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/210850 Can the wrf model characterize atmospheric stability for wind energy purposes?; XIV Congreso Argentino de Meteorología; Buenos Aires; Argentina; 2022; 1-3 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/210850 |
identifier_str_mv |
Can the wrf model characterize atmospheric stability for wind energy purposes?; XIV Congreso Argentino de Meteorología; Buenos Aires; Argentina; 2022; 1-3 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://cenamet.org.ar/congremet/wp-content/uploads/2023/02/LibroActas_compressed.pdf |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.coverage.none.fl_str_mv |
Internacional |
dc.publisher.none.fl_str_mv |
Centro Argentino de Meteorólogos |
publisher.none.fl_str_mv |
Centro Argentino de Meteorólogos |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842270041776586752 |
score |
13.13397 |